Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clinical trial for muscular dystrophy demonstrates safety of customized gene therapy

01.12.2011
Researchers at the University of North Carolina at Chapel Hill have shown that it is safe to cut and paste together different viruses in an effort to create the ultimate vehicle for gene therapy. In a phase I clinical trial, the investigators found no side effects from using a "chimeric" virus to deliver replacement genes for an essential muscle protein in patients with muscular dystrophy.

"This trial demonstrates that gene therapy is no longer limited by the viruses we find in nature, and should usher in the next generation of viral delivery systems for human gene transfer," said senior study author R. Jude Samulski, PhD, professor of pharmacology and director of the Gene Therapy Center at UNC. The study appears online in the Nov. 8, 2011 issue of the journal Molecular Therapy.

Through gene therapy, scientists treat diseases by correcting a patient's faulty genes. Most of the time, this approach involves commandeering a natural system for infecting and introducing new genes into cells; thus, the virus. But even though there are lots of relatively innocuous viruses available for this purpose, none of them are perfectly suited for gene therapy.

Rather than rely on nature, Samulski and his colleagues decided to engineer their dream gene therapy virus in the laboratory. First they chose the adeno-associated virus or AAV, a small nonpathogenic virus that most humans are exposed to at some point in life. They then took their favorite attributes from different forms of AAV – such as AAV type 1's ability to sneak into muscle, and AAV type 2's safe track record – and combined them into one "chimeric" virus. In the first trial of this form of gene therapy, the investigators gave six boys with Duchenne muscular dystrophy (DMD) this new virus. An x-linked inherited disorder, DMD affects one in 4,000 newborn boys.

The virus was engineered to contain the dystrophin gene, which is missing in patients with muscular dystrophy and is the ultimate cause of the disease's progressive muscle weakness. The replacement genes were injected into the bicep in one arm and a placebo was injected into the other arm of each of the patients. The researchers were able to detect the new genes in all of the patients treated with the gene therapy, but no immunological response.

As they move on to the next phase of clinical trials, Samulski says they are carefully considering how best to administer the gene therapy vectors to patients. Delivering enough replacement genes to a therapeutic effect could require larger doses of virus, which in turn could elicit an unwanted immune response. So the researchers are exploring a number of different options, including using a new high pressure technique developed by William J. Powers, MD, professor and chair of neurology at UNC, reported last July in the same journal, to get the virus into muscle at lower doses.

Study co-authors from UNC include Dawn E. Bowles, PhD; Scott W.J. McPhee, PhD, MPH; Chengwen Li, PhD; Steven J. Gray, PhD; Jade J. Samulski, Angelique S. Camp, Juan Li, MD; Bing Wang, Paul E. Monahan, MD; Joshua C. Grieger, PhD; and Xiao Xiao, PhD.

The UNC research was funded by the National Institutes of Health, the Muscular Dystrophy Association and a grant from the Senator Paul D. Wellstone Muscular Dystropy Cooperative Research Center funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>