Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells with a long breath: Seeking the origin of brain tumours in children

13.08.2008
Medulloblastoma is one of the most common and most malignant brain tumours among children and teenagers. These tumours grow very rapidly, and fifty percent of patients in the long term die from the condition.

The details of the processes that lead to the growth of these tumours have remained unknown until now. In two studies, working together with international scientific teams, LMU medical scientist Dr. Ulrich Schüller has now successfully revealed certain molecular mechanisms that lead to the development of these cerebellar tumours.

As reported in the current issue of the journal “Cancer Cell”, the researchers triggered genetic changes in cell populations in the brains of mice in order to provoke the growth of tumours. It turned out that medulloblastomas arose from only one type of cell – granule cells – and only if these were already fully committed. “Medulloblastomas are presently treated with nonspecific methods,” states Schüller. “Our results could contribute to the development of targeted therapies, and thus improve the treatment of cerebellar tumours in children.”

When children develop cancer, about every fifth tumour is a brain tumour – and every fifth of those in turn is a medulloblastoma. This common tumour occurs most of all in children under ten years of age, but also occurs in adults, albeit very infrequently. Up to now, medulloblastomas have only been treatable with the standard tools of cancer medicine: operation, radiotherapy and chemotherapy. Surgical interventions to treat this condition, like all operations on the brain, are particularly delicate, since it is difficult to remove the tumour completely without affecting healthy tissue. Because these cerebellar tumours scatter easily throughout the brain and even in the medullary canal, many cases result in metastases, that is the growth of secondary tumours, and not infrequently to a relapse of the original tumour – often even after successful conclusion of the treatment.

That is why patients and doctors are hoping for more targeted therapies that promise better therapeutic outcomes. “But for that to be possible, we first need to understand the principles of how the tumours develop,” says Schüller. “If we know how a tumour arises at the molecular level, we can also develop specific therapies that actually treat the cause of that particular condition.” Since it was still unknown from what type of cell and at what stage of development medulloblastomas arise, the researchers induced specific genetic changes in various cell populations in the brains of mice. This “conditional knock-out” method provoked changes in the so-called sonic hedgehog signalling pathway. Various processes in the development of nerve cells are controlled by this molecular signalling cascade. “Normally, the signalling pathway ensures a balance of growth and maturation of cells,” says Schüller. “But if disrupted, it can lead to uncontrolled growth of cells – and thus the onset of cancer”.

In another step, the research team investigated the effects of mutations on nerve cells in various stages of development. Multipotent progenitor cells have the ability – almost like stem cells – to develop into many different types of cell, while “unipotent” progenitor cells can only develop into one specific type of cell. “All of our studies have shown that medulloblastomas can only develop from granule cells and their progenitors,” Schüller tells us. “Other cells on the other hand, such as the large Purkinje cells of the cerebellum, do not become tumourigenic. They don’t seem bothered by these mutations at all.” And there is yet another distinctive result that the researchers achieved: the genetic changes only triggered one specific type of tumour: the medulloblastoma. Other brain tumours such as astrocytomas or oligodendrogliomas did not occur, even though, normally, the genetically attacked multipotent progenitors could have just as easily developed into astrocytes or oligodendrocytes.

It was especially surprising that even mutations in very early, immature cells triggered corresponding changes that only became tumourigenic if and when the cells had developed the characteristics of granule cells. The researchers were also surprised to find that the medulloblastomas appeared completely identical both morphologically and molecularly, no matter what stage of development they were triggered at. The researchers identified yet another factor in the development of medulloblastomas: the protein Olig2 has so far only been linked to the formation of glial cells in the brain, which primarily provide support for neurons. “But we also found Olig2 in progenitors of the granule cells of the cerebellum and in tumour cells,” reports neuropathologist Schüller. “That means this protein also influences the formation and multiplication of cancer cells – which makes it clear once again just how closely normal and malignant development processes resemble one another. We hope our results will contribute to a targeted therapy for medulloblastomas. That will require further research, however, which we already have in the planning.”

One of the funders of the studies was the German Cancer Aid, with whose assistance Schüller established one of two Max-Eder Young Investigator Groups at LMU.

Kathrin Bilgeri | alfa
Further information:
http://www.lmu.de

More articles from Health and Medicine:

nachricht Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis
22.02.2019 | Children's National Health System

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>