Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Best treatment for herniated disc

05.09.2019

A herniated disc is painful – and the most frequent cause of spinal surgery. But is the selected treatment always the right one? New research results show that the clinical criteria – the comparison of two static images – are often not sufficient to make the best decision for the patient.

Sudden back pain is often caused by a herniated disc. The intervertebral discs are a kind of buffer between the vertebrae and are heavily strained over the years. If they become brittle and break, parts of the tissue can extend outwards and press on the nerve or the spinal canal.


This can cause severe pain. The lumbar spine is par­ticularly often affected. The herniated disc often shrinks again on its own with the support of pain and inflammation inhibiting medication, but in more severe cases surgery is necessary.

One option is to remove the ex­ud­ed disc mass in order to reduce the pressure on the nerve or the spinal canal. Thanks to microsurgery, this is now a minimally invasive procedure.

The second option is to fuse the affected vertebrae. Screws are inserted into the vertebral bodies and the two affected vertebrae are permanently fused with a metal construction. This is necessary when the vertebrae are strongly displaced against each other during movement. However, stiffening is a riskier, highly invasive procedure – and often the problem only shifts as a result: the following intervertebral discs are subjected to greater stress as a consequence and can also yield.

In order to decide which operation is necessary, doctors rely on X-ray images. Usually one image is taken in the upright state and another in the forward bent state. If the affected vertebrae shift strongly towards each other or even twist, fusion is necessary – if not, decompression can suffice.

However, various studies have shown that this comparison of two static images is often not sufficient as a basis for a decision: up to one third of the patients who receive the simpler operation have to undergo subsequent surgery.

At the same time, it can be assumed that not all patients in whom the vertebrae were fused required this surgical procedure. The problem: The images only show the initial and final state of the vertebral position – and not what happens during the movement itself.

Dynamic movement patterns are crucial

Researchers from the Mechanical System Engineering Lab at Empa and the Department of Orthopaedic Surgery at the University of Pittsburgh were now able to show that the vertebrae do not move linearly during movement. On the contrary: "Depending on the patient, very different move-ment patterns appeared," explains Empa researcher and co-director of the project, Ameet Ai-yangar.

For the study, which won the ISSLS Prize in Bioengineering Science in 2018, the researchers produced dynamic images of seven patients with herniated discs and seven control subjects in the same age group in a continuous X-ray image while slowly tilting their upper bodies forward.

From the images, the researchers calculated how the vertebrae moved in the sagittal axis of rotation and flat to each other. The results are remarkable: It would be expected, as was con­firmed in most of the healthy controls, that the sagittal angle of rotation and the vertical displacement in­crease uniformly during movement.

Paradoxically, however, in one patient, the vertebrae first shifted in the opposite direction to the movement and then back to the center – so while the initial and final positions looked as if the vertebrae were stable, the move­ment showed great instability. For this individual, decompression alone would not have been of much use, but fusion would have been necessary.

The clinical analysis would have massively underestimated the instability in this person. This can be seen in the figures: if the researchers only compared the initial and final values of the images, a displace-ment value of just 0.4 mm was found. In the movement itself, however, the researchers observed a value of 4.6 mm – more than 11 times the traditionally calculated value.

In other cases, vertebrae hardly shift­ed – however at first did rotate strongly into opposite direction and back again. Only in two of the patients did a movement take place that roughly met expectations. Overall, each of the examined patients achieved a maximum displacement of at least 1.8 mm. In the clinical calculation, however, a displacement of less than 0.4 mm was calculated for three of the seven patients.
Technology not yet part of clinical routine

This shows that the current basis for decision-making on the type of oper­ation is often insufficient – a dynamic assessment of the damage would be necessary. So simply replace the static X-ray machines with dynamic ones and the problem is solved? Unfortunately, it's not quite that simple: the technology required to create the dynamic images – socalled "Dynamic Stereo X-Ray" (DSX) systems – only exists in a few locations worldwide.

And the calculations of the movements are very complex. "At the moment, the technology only exists in the research stage. However, we are in the early stages of transition – one day the devices could become part of everyday hospital life," explains Aiyangar. Until then, the researcher suggests, it might at least make sense to create and compare several X-ray images in different static states instead of just two images in end positions.

Therapy instead of surgery?

Aiyangar already has more ideas: He wants to investigate the benefit of therapy for herniated discs. 200 different muscle strands are involved in the movement and stabilization of the back. It is impossible to measure them all at the same time in order to find out which therapy offers the greatest benefit. "Modeling the complex system could contribute a lot to correct early intervention," says Aiyangar. With the right therapy, it is hoped, surgery could even be avoided altogether.

Wissenschaftliche Ansprechpartner:

Dr. Ameet Aiyangar
Mechanical System Engineering
Phone +41 58 765 45 08
Ameet.Aiyangar@empa.ch

Weitere Informationen:

https://www.empa.ch/web/s604/bandscheibenbehandlung

Karin Weinmann | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt
Further information:
http://www.empa.ch

More articles from Health and Medicine:

nachricht World-first cardio trial shows shorter wait times and admissions
03.09.2019 | Flinders University

nachricht Blocking specific protein could provide new treatment for deadly form of prostate cancer
02.09.2019 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Next generation video: WDR and Fraunhofer HHI present significantly improved video quality at IFA 2019

The demand for even higher resolution videos will continue to increase in the coming years. For this reason, the German public service broadcaster WDR and the Fraunhofer Heinrich Hertz Institute HHI will collaborate in the coming months to test the Video Coding possibilities offered by the next international standard VVC/H.266.

VVC/H.266 is the successor standard to HEVC/H.265. The latter is currently the most modern and efficient standard for Video Coding and is used, for example, in...

Im Focus: Nanodiamonds in the brain

The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the supply of drugs or contrast media that would allow therapy and image acquisition. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now produced tiny diamonds, so-called "nanodiamonds", which could serve as a platform for both the therapy and diagnosis of brain diseases.

The blood-brain barrier is a physiological boundary layer that works highly selectively and thus protects the brain: On the one hand, pathogens or toxins are...

Im Focus: Entanglement sent over 50 km of optical fiber

For the first time, a team led by Innsbruck physicist Ben Lanyon has sent a light particle entangled with matter over 50 km of optical fiber. This paves the way for the practical use of quantum networks and sets a milestone for a future quantum internet.

The quantum internet promises absolutely tap-proof communication and powerful distributed sensor networks for new science and technology. However, because...

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

 
Latest News

Dresden creates ground-breaking interface between technology and medicine

05.09.2019 | Interdisciplinary Research

Best treatment for herniated disc

05.09.2019 | Health and Medicine

Corals take control of nitrogen recycling

04.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>