Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Half-match' bone marrow transplants wipe out sickle cell disease in selected patients

21.09.2012
In a preliminary clinical trial, investigators at Johns Hopkins have shown that even partially-matched bone marrow transplants can eliminate sickle cell disease in some patients, ridding them of painful and debilitating symptoms, and the need for a lifetime of pain medications and blood transfusions. The researchers say the use of such marrow could potentially help make bone marrow transplants accessible to a majority of sickle cell patients who need them.

After a median follow-up of two years, the transplants successfully eliminated sickle cell disease in 11 of 17 patients. Three were fully matched to their donors and eight received half-matched donor marrow. All 11 patients are free of painful sickle cell crises and 10 no longer have anemia. There were no deaths and no unexpected toxicities.

Six of the 11 patients (all half-matched) have stopped taking immunosuppressive drugs, although some still require narcotics for chronic pain because of sickle cell-related organ damage. Blood tests on the six patients show that their red cells are now completely derived from their donor's marrow.

Patients with severe sickle cell disease (SCD) face shortened life spans, intractable pain and eventual organ damage as a result of their disease, an inherited disorder caused by a mistake in the oxygen-carrying hemoglobin molecules in red blood cells. The flawed genetic code stiffens red cells, and shapes them into a pronged "sickle" that clump and stick into blood vessel walls, cutting off blood and oxygen to tissues and organs throughout the body.

SCD occurs in approximately one in 400 African Americans, and rarely in Caucasians. An estimated 100,000 people are currently living with sickle cell disease in the U.S.

Most patients die before age 50, and many suffer poor quality of life with frequent episodes of "off-the-charts" pain, and an increased risk for kidney failure, stroke, deep-vein thrombosis, and lung disease.

Treatments include blood transfusions and a drug, hydroxyurea. Many patients use narcotics to control severe pain and have repeat hospitalizations. Bone marrow transplants have been successful in curing some cases, but matching donors are rare and the procedure itself poses risk.

In the current study, 17 patients at the Johns Hopkins Hospital were offered bone marrow transplant options, including the use of half-matched donor marrow to try and replace their "sickled" blood cells with new, healthy ones. The transplants were successful in 11 of the patients, of whom eight were only half-matches. Results of the trial were published in the Sept. 6 early online edition of Blood.

"We're trying to reformat the blood system and give patients new blood cells to replace the diseased ones, much like you would replace a computer's circuitry with an entirely new hard drive," says Robert Brodsky, M.D., director of the Division of Hematology at Johns Hopkins and The Johns Hopkins Family Professor of Medicine and Oncology. "While bone marrow transplants have long been known to cure sickle cell disease, only a small percentage of patients have fully matched, eligible donors."

National registries often are of little help in finding donors for sickle cell patients, because most of those in need are African American and other minorities who are vastly underrepresented in registries, say the Johns Hopkins researchers.

To overcome the shortage of donors, investigators at Johns Hopkins developed techniques, recently tested in leukemia and lymphoma patients, to transplant with bone marrow that is half-identical or "haploidentical" to the patient's tissue type. Half-matched bone marrow can be obtained from parents, children and most siblings, and is extracted by needle from the hip bone.

For the study, the Johns Hopkins team screened 19 patients to find bone marrow donors with either half-identical or fully matched tissue. Each transplant candidate had experienced many severe pain crises, significant organ problems, or had failed hydroxyruea, the only drug known to curtail sickle cell symptoms. The team found donors for 17 of the 19 patients: 14 were half-identical and three were fully matched siblings. The youngest patient was 15; the oldest 46.

Before each transplant, sickle cell patients received a "conditioning" regimen of low-dose immunosuppression drugs, low toxicity chemotherapy, and low-dose total body irradiation. Brodsky says this gentler approach to pre-transplant therapy has made transplant possible for sickle cell patients whose tissues and organs have been ravaged by the disease.

After the transplant, all patients received high doses of the chemotherapy drug cyclophosphamide, which kills remaining blood cells, including diseased sickled cells, and preserves the donor's stem cells responsible for making new, healthy cells.

Of the 17 patients, six transplants were not successful; however, because of the reduced intensity of the conditioning regimen, all of these patients recovered their own blood cells.

There were no deaths, some infections, and only slight skin-related graft versus host disease symptoms in one patient, which cleared without therapy, the researchers reported. Some brain swelling occurred in three patients during the conditioning period and resolved without neurologic damage.

The Johns Hopkins doctors say that while the majority of patients in the trial had successful transplants, about less than half did not.

"Sickle cell disease patients undergo multiple blood transfusions throughout their lives and may have acquired antibodies against many different blood types, making it more difficult than usual to give patients donated bone marrow." says Javier Bolaños-Meade, M.D., associate professor of oncology at the Johns Hopkins Kimmel Cancer Center and principal investigator of the study.

Improving the rate of engraftment in haploidentical transplants for sickle cell disease remains a challenge, they say, but the researchers are looking for additional ways to overcome it, including increasing the number of stem cells transplanted and using other immunosuppressant drugs during the transplant.

In addition to Bolaños Meade and Brodsky, researchers contributing to the study included Ephraim Fuchs, M.D., Leo Luznik, M.D., Sophie Lanzkron, M.D., Christopher Gamper, M.D., Ph.D., and Richard Jones, M.D., at Johns Hopkins.

Funding for the research was provided by the National Cancer Institute and National Institutes of Health (P01CA15396 and K23HL083089) and Sistema Nacional de Investigadores (Mexico).

Fuchs, Luznik, Brodsky and Jones are listed as inventors on a patent application regarding the "use of high-dose, post-transplantation oxazaphosphorine drugs for reduction of transplant rejection." Lanzkron served in a scientific advisory board for Hemaquest.

On the Web:
Blood Journal: http://bloodjournal.hematologylibrary.org/content/early/2012/09/06/blood-2012-07-438408

Richard Jones, M.D., discusses bone marrow transplants and haploidentical transplants: http://www.youtube.com/watch?v=c8s7mC_X_Zo&feature=share&list=PL60C509D56B1E0674

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>