Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers test new imaging method for first time on human patients

04.04.2019

The new technology is focused on improving detection and diagnosis of congenital heart disease in infants and children.

A new study by biomedical engineering researchers at the University of Arkansas could significantly improve methods for detecting and diagnosing congenital heart disease in infants and small children.


Vector flow imaging demonstrates swirl of blood flow within the dilated main pulmonary artery of a pig.

Credit: Image provided by the researchers

The researchers, collaborating with cardiologists at Arkansas Children's Hospital in Little Rock, tested a new ultrasound technology called vector flow imaging for the first time on pediatric patients to create detailed images of the internal structure and blood flow of the babies' hearts. The images can be still or moving, and can be taken from any angle.

"Vector flow imaging technology is not yet possible in adults, but we have demonstrated that it is feasible in pediatric patients," said Morten Jensen, associate professor of biomedical engineering at the U of A. "Our group demonstrated that this commercially available technology can be used as a bedside imaging method, providing advanced detail of blood flow patterns within cardiac chambers, across valves and in the great arteries."

Jensen performed the study with a multidisciplinary team, including Dr. Hanna Jensen, clinical assistant professor of biomedical engineering at the U of A; Dr. Thomas Collins, clinical associate professor of pediatric cardiology at Stanford University School of Medicine; and researchers at University of Arkansas for Medical Sciences (UAMS) and Cincinnati Children's Hospital Medical Center. Their findings were published in Progress in Pediatric Cardiology.

Roughly 1 percent of all babies are born with some type of congenital heart defect. Fortunately, the majority of these defects will never have any significant impact as the child grows into adulthood and old age. Pediatric cardiologists detect and diagnose congenital heart disease through multiple processes, including echocardiography. This imaging method is based on ultrasound and assesses the overall health of the heart, including valves and muscle contraction.

Although ultrasound provides essential information about cardiac valve function in babies and small children, it has critical limitations. It cannot accurately obtain details of blood flow within the heart. This is due primarily to the inability to align the ultrasound beam with blood-flow direction.

Using a BK5000 Ultrasound machine with built-in vector flow imaging, the researchers performed successful tests on two pigs, one with normal cardiac anatomy and one with congenital heart disease due to a narrow pulmonary valve and a hole within the heart. The researchers then compared the vector flow images to direct examination of the pigs' hearts.

The researchers subsequently used the imaging system to take cardiac images of two three-month-old babies, one with a healthy, structurally normal heart and one with congenital heart disease because of an abnormally narrow aorta. With both patients, the technology enabled total transthoracic imaging of tissue and blood flow at a depth of 6.5 centimeters. Abnormal flow and detailed cardiac anomalies were clearly observed in the patient with congenital heart disease.

All procedures, both animal and human, were performed at Arkansas Children's Hospital with assistance from Dr. Elijah Bolin, pediatric cardiologist at UAMS.

"We are still getting used to having this great, new information readily available, and we're excited about the future in both research and direct clinical advancements," Bolin said.

"This technology will increase our ability to provide the best possible bedside diagnosis and greatly enhances our understanding of what is happening in hearts with complex abnormalities," Stanford's Collins said.

The researchers will perform additional studies to further quantify images using this recently developed technology.

###

This project was supported by the Arkansas Children's Research Institute, the Collaborative Nutrition Pilot Grant and the Arkansas Research Alliance.

Jensen is an Arkansas Research Alliance Scholar.

Media Contact

Matt McGowan
dmcgowa@uark.edu
479-575-4246

http://www.uark.edu 

Matt McGowan | EurekAlert!
Further information:
https://www.sciencedirect.com/science/article/pii/S1058981318301103?via=ihub&fbclid=IwAR33it2FjeLwCzGZ3o9TxCYdF_zZV93si7okqgauo9noJKWZUlVbP46RzEs

More articles from Medical Engineering:

nachricht Smartphones as ophthalmoscopes save sight: Cost-effective telemedical eye screening of people with diabetes in India
09.07.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Shorter courses of proton therapy can be just as effective as full courses prostate cancer
08.07.2019 | University of Pennsylvania School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>