Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole-Blood Sensor Research Could Transform Cardiac Testing

15.10.2007
University of Ulster researchers have teamed up with scientists at the Indian Institute of Technology, Bombay on a project to develop low-volume whole-blood sensors that could transform point-of-care cardiac testing.

Fast, accurate blood analysis is vital in the treatment of people suffering heart attacks or other life-threatening cardiac events, said Professor Jim McLaughlin, Director of UU’s Nanotechnology & Advanced Materials Research Institute, who leads the project team.

“If you have a suspected heart attack medical staff will monitor your ECG, respiration rate, SP02 and eye dilation.

“But it is also vitally important that your blood is analysed as quickly as possible. Analysing cardiac enzymes in the blood will enable medical staff to determine the correct treatment. It will guide them on whether to administer clot-busting drugs, insert a stent or attempt defibrillation, for example.”

The sensor system under development will use carbon nanotubes to filter out blood cells - preventing them from adhering to the sensor, or distorting the result.

Typical uses of the technology include monitoring of cardiac enzymes, e.g. troponin I, to aid in the diagnosis of a cardiac attack, determine the severity and also monitor recovery afterwards.

The ultimate application will be important in cases where defibrillators are used; cardiac rehabilitation; bed-side monitoring; triage scenarios and at the scene of an emergency.

The UU/IIT Bombay initiative is part of the UK-India Education and Research Initiative (UKERI), a programme funded by the governments of the UK and India, for collaborative projects between educational institutes in the two countries.

The UKERI project has enabled the recruitment of four new PhD students who have already started at UU, and is expected to attract more PhD exchanges as it progresses. The first formal meeting between the researchers took place on 25-28th of September 2007 at the University of Ulster.

David Young | alfa
Further information:
http://news.ulster.ac.uk/releases/2007/3443.html

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>