New technique can be breakthrough for early cancer diagnosis

In an article in the latest issue of Molecular & Cellular Proteomics, Uppsala University researchers describe a technique that the journal regards as especially interesting.

Proteins build up the body’s cells and tissues, and our knowledge of the human genome also entails that today’s scientists are aware of all of the proteins that our body can produce. It is known that many morbid conditions can be linked to changes in proteins, so it is important to enhance our knowledge of what proteins bind to each other, how they work together, and how processes are impacted by various disturbances.

In 2006 Ola Söderberg and his colleagues at the Department of Genetics and Pathology devised a new technique, in situ PLA (in situ proximity ligation assay), that could detect communication between proteins in cells. These researchers have now refined the method and can now see how proteins undergo change inside a cell.

“The method provides a better potential to truly understand how proteins function in the cell and can show what is wrong with a sick cell, as in cancer, for instance. The refined method has the potential to revolutionize cancer diagnostics, so there has been a great deal of interest in the method from the research community,” says Ola Söderberg.

The technique is more sensitive and more reliable than other available techniques in molecular diagnostics, and it has already started to be sold by the Uppsala company Olink, so there are high hopes that it will soon be used in health care.

Media Contact

Anneli Waara alfa

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors