Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smell of success for nanobiosensors

16.05.2006
Modern-day doctors may soon start using smell to detect the early warning signs of different illnesses thanks to technology that replicates - and improves upon - the human olfactory system thanks to tiny bioelectronic sensors.

The new interdisciplinary technology approach, developed and tested by researchers in Spain, France and Italy with funding from the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, will ultimately lead to electronic noses based on natural olfactory receptors that could be used not only in healthcare but also in agriculture, industry, environmental protection or security.

“The potential uses of smell technology are endless,” notes Josep Samitier, the coordinator of the SPOT-NOSED project that developed nanobiosensors to mimic the way human and animal noses respond to different odours.

This new nose biosensor is unusual in how it’s made. By placing a layer of proteins that constitute the olfactory receptors in animal noses on a microelectrode and measuring the reaction when the proteins come into contact with different odorants, the system is capable of detecting odorants at concentrations that would be imperceptible to humans.

“Our tests showed that the nanobiosensors will react to a few molecules of odorant with a very high degree of accuracy. Some of the results of the trials surpassed even our expectations,” Samitier says. These tiny bioelectronic sensors, he says, represent a ‘major leap forward’ in smell technology and a clear example of a biomimetic devices obtained by converging Nano-Bio-Info technologies.

Several hundred different proteins, which the SPOT-NOSED researchers genetically copied from rats and grew in yeast, would be needed for an electronic nose to detect almost any smell because different proteins react to different odorants and it is the resultant combination of reactions that identifies a certain smell. Nanotechnology makes such an electronic nose feasible, the coordinator notes, even though the human nose uses 1,000 different proteins to allow the brain to recognise 10,000 different smells.

While the SPOT-NOSED project focused on replicating the physical reaction that takes place in animal noses, the project partners are now planning to continue their research and develop the instrumentation and software tools necessary for an electronic nose to recognise smells – the role played by the brain in the olfactory system. In this sense, new high accuracy electronic instrumentation capable of performing electrical measurements at the nanoscale level has been developed and adapted to an atomic force microscope with atofarad precision (10-15).

This, Samitier says, could lead to medical applications to diagnose organ failure, bacterial infections or diseases such as cancer being made commercially available within a few years, as well as devices that would have a major impact on other sectors. A major challenge of these new diagnostic tools lies in the establishment of a precise odorant disease signature, understood as the mix of volatile compounds whose concentration in a body fluid (i.e. urine, blood, pus, etc) or in the breath varies in patients with the malignancy with respect to healthy individuals. Moreover, smell technology could, for example, be used to detect rotten food, test cosmetics and pharmaceuticals, identify pollutants or scan for drugs and bombs at airports, replacing chemical sensors that are only able to detect a single substance.

Tara Morris | alfa
Further information:
http://istresults.cordis.europa.eu
http://istresults.cordis.lu/

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>