Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reinforcement learning expedites 'tuning' of robotic prosthetics

18.01.2019

Researchers from North Carolina State University, the University of North Carolina and Arizona State University have developed an intelligent system for "tuning" powered prosthetic knees, allowing patients to walk comfortably with the prosthetic device in minutes, rather than the hours necessary if the device is tuned by a trained clinical practitioner. The system is the first to rely solely on reinforcement learning to tune the robotic prosthesis.

When a patient receives a robotic prosthetic knee, the device needs to be tuned to accommodate that specific patient. The new tuning system tweaks 12 different control parameters, addressing prosthesis dynamics, such as joint stiffness, throughout the entire gait cycle.


Researchers from North Carolina State University, the University of North Carolina and Arizona State University have developed an intelligent system for 'tuning' powered prosthetic knees, allowing patients to walk comfortably with the prosthetic device in minutes, rather than the hours necessary if the device is tuned by a trained clinical practitioner. The system is the first to rely solely on reinforcement learning to tune the robotic prosthesis.

Credit: Helen Huang

Normally, a human practitioner works with the patient to modify a handful of parameters. This can take hours. The new system relies on a computer program that makes use of reinforcement learning to modify all 12 parameters. It allows patients to use a powered prosthetic knee to walk on a level surface in about 10 minutes.

"We begin by giving a patient a powered prosthetic knee with a randomly selected set of parameters," says Helen Huang, co-author of a paper on the work and a professor in the Joint Department of Biomedical Engineering at NC State and UNC. "We then have the patient begin walking, under controlled circumstances.

"Data on the device and the patient's gait are collected via a suite of sensors in the device," Huang says. "A computer model adapts parameters on the device and compares the patient's gait to the profile of a normal walking gait in real time.

The model can tell which parameter settings improve performance and which settings impair performance. Using reinforcement learning, the computational model can quickly identify the set of parameters that allows the patient to walk normally. Existing approaches, relying on trained clinicians, can take half a day."

While the work is currently done in a controlled, clinical setting, one goal would be to develop a wireless version of the system, which would allow users to continue fine-tuning the powered prosthesis parameters when being used in real-world environments.

"This work was done for scenarios in which a patient is walking on a level surface, but in principle, we could also develop reinforcement learning controllers for situations such as ascending or descending stairs," says Jennie Si, co-author of the paper and a professor of electrical, computer and energy engineering at ASU.

"I have worked on reinforcement learning from the dynamic system control perspective, which takes into account sensor noise, interference from the environment, and the demand of system safety and stability," Si says. "I recognized the unprecedented challenge of learning to control, in real time, a prosthetic device that is simultaneously affected by the human user.

This is a co-adaptation problem that does not have a readily available solution from either classical control designs or the current, state-of-the-art reinforcement learning controlled robots. We are thrilled to find out that our reinforcement learning control algorithm actually did learn to make the prosthetic device work as part of a human body in such an exciting applications setting."

Huang says researchers hope to make the process even more efficient. "For example, we think we may be able to improve the process by identifying combinations of parameters that are more or less likely to succeed, and training the model to focus first on the most promising parameter settings."

The researchers note that, while this work is promising, many questions need to be addressed before it is available for widespread use.

"For example, the prosthesis tuning goal in this study is to meet normative knee motion in walking," Huang says. "We did not consider other gait performance (such as gait symmetry) or the user's preference. For another example, our tuning method can be used to fine-tune the device outside of the clinics and labs to make the system adaptive over time with the user's need. However, we need to ensure the safety in real-world use since errors in control might lead to stumbling and falls. Additional testing is needed to show safety."

The researchers also note that, if the system does prove to be effective and enter widespread use, it would likely reduce costs for patients by limiting the need for patients to make clinical visits to work with practitioners.

###

The paper, "Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis," is published in the journal IEEE Transactions on Cybernetics. First author of the paper is Yue Wen, a Ph.D. biomedical engineering student at NC State and UNC. Additional co-authors include Andrea Brandt, a Ph.D. biomedical engineering student at NC State and UNC; and Xiang Gao, a Ph.D. student at ASU.

The work was done with support from the National Science Foundation under grant numbers 1563454, 1563921, 1808752 and 1808898.

Media Contact

Matt Shipman
matt_shipman@ncsu.edu
919-515-6386

 @NCStateNews

http://www.ncsu.edu 

Matt Shipman | EurekAlert!
Further information:
https://news.ncsu.edu/2019/01/reinforcement-learning-expedites-tuning-of-robotic-prosthetics/
http://dx.doi.org/10.1109/TCYB.2019.2890974

Further reports about: ASU Robotic biomedical engineering computer model human body knee prosthetics

More articles from Medical Engineering:

nachricht Highly sensitive sensors to measure the heart and brain activity
20.09.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Motion pictures from living cells: Research team from Jena and Bielefeld improves superresolution microscopy
20.09.2019 | Leibniz-Institut für Photonische Technologien e. V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>