Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reinforcement learning expedites 'tuning' of robotic prosthetics

18.01.2019

Researchers from North Carolina State University, the University of North Carolina and Arizona State University have developed an intelligent system for "tuning" powered prosthetic knees, allowing patients to walk comfortably with the prosthetic device in minutes, rather than the hours necessary if the device is tuned by a trained clinical practitioner. The system is the first to rely solely on reinforcement learning to tune the robotic prosthesis.

When a patient receives a robotic prosthetic knee, the device needs to be tuned to accommodate that specific patient. The new tuning system tweaks 12 different control parameters, addressing prosthesis dynamics, such as joint stiffness, throughout the entire gait cycle.


Researchers from North Carolina State University, the University of North Carolina and Arizona State University have developed an intelligent system for 'tuning' powered prosthetic knees, allowing patients to walk comfortably with the prosthetic device in minutes, rather than the hours necessary if the device is tuned by a trained clinical practitioner. The system is the first to rely solely on reinforcement learning to tune the robotic prosthesis.

Credit: Helen Huang

Normally, a human practitioner works with the patient to modify a handful of parameters. This can take hours. The new system relies on a computer program that makes use of reinforcement learning to modify all 12 parameters. It allows patients to use a powered prosthetic knee to walk on a level surface in about 10 minutes.

"We begin by giving a patient a powered prosthetic knee with a randomly selected set of parameters," says Helen Huang, co-author of a paper on the work and a professor in the Joint Department of Biomedical Engineering at NC State and UNC. "We then have the patient begin walking, under controlled circumstances.

"Data on the device and the patient's gait are collected via a suite of sensors in the device," Huang says. "A computer model adapts parameters on the device and compares the patient's gait to the profile of a normal walking gait in real time.

The model can tell which parameter settings improve performance and which settings impair performance. Using reinforcement learning, the computational model can quickly identify the set of parameters that allows the patient to walk normally. Existing approaches, relying on trained clinicians, can take half a day."

While the work is currently done in a controlled, clinical setting, one goal would be to develop a wireless version of the system, which would allow users to continue fine-tuning the powered prosthesis parameters when being used in real-world environments.

"This work was done for scenarios in which a patient is walking on a level surface, but in principle, we could also develop reinforcement learning controllers for situations such as ascending or descending stairs," says Jennie Si, co-author of the paper and a professor of electrical, computer and energy engineering at ASU.

"I have worked on reinforcement learning from the dynamic system control perspective, which takes into account sensor noise, interference from the environment, and the demand of system safety and stability," Si says. "I recognized the unprecedented challenge of learning to control, in real time, a prosthetic device that is simultaneously affected by the human user.

This is a co-adaptation problem that does not have a readily available solution from either classical control designs or the current, state-of-the-art reinforcement learning controlled robots. We are thrilled to find out that our reinforcement learning control algorithm actually did learn to make the prosthetic device work as part of a human body in such an exciting applications setting."

Huang says researchers hope to make the process even more efficient. "For example, we think we may be able to improve the process by identifying combinations of parameters that are more or less likely to succeed, and training the model to focus first on the most promising parameter settings."

The researchers note that, while this work is promising, many questions need to be addressed before it is available for widespread use.

"For example, the prosthesis tuning goal in this study is to meet normative knee motion in walking," Huang says. "We did not consider other gait performance (such as gait symmetry) or the user's preference. For another example, our tuning method can be used to fine-tune the device outside of the clinics and labs to make the system adaptive over time with the user's need. However, we need to ensure the safety in real-world use since errors in control might lead to stumbling and falls. Additional testing is needed to show safety."

The researchers also note that, if the system does prove to be effective and enter widespread use, it would likely reduce costs for patients by limiting the need for patients to make clinical visits to work with practitioners.

###

The paper, "Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis," is published in the journal IEEE Transactions on Cybernetics. First author of the paper is Yue Wen, a Ph.D. biomedical engineering student at NC State and UNC. Additional co-authors include Andrea Brandt, a Ph.D. biomedical engineering student at NC State and UNC; and Xiang Gao, a Ph.D. student at ASU.

The work was done with support from the National Science Foundation under grant numbers 1563454, 1563921, 1808752 and 1808898.

Media Contact

Matt Shipman
matt_shipman@ncsu.edu
919-515-6386

 @NCStateNews

http://www.ncsu.edu 

Matt Shipman | EurekAlert!
Further information:
https://news.ncsu.edu/2019/01/reinforcement-learning-expedites-tuning-of-robotic-prosthetics/
http://dx.doi.org/10.1109/TCYB.2019.2890974

Further reports about: ASU Robotic biomedical engineering computer model human body knee prosthetics

More articles from Medical Engineering:

nachricht Correcting presbyopia with the laser
06.02.2019 | Laser Zentrum Hannover e.V.

nachricht New technology gives unprecedented look inside capillaries
28.01.2019 | Northwestern University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>