Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT researcher testing micro-electronic stimulators for spinal cord injuries

18.10.2011
A new wireless device to help victims of spinal cord injury is receiving attention in the research community. Mesut Sahin, PhD, associate professor, in the department of biomedical engineering at NJIT, recently has published and presented news of his findings to develop micro-electrical stimulators for individuals with spinal cord injuries.

The work, now in its third year of support from a four-year, $1.4 million National Institutes of Health (NIH) grant, has resulted in the development and testing of a technology known by its acronym, FLAMES (floating light activated micro-electrical stimulators).

The technology, really a tiny semiconductor device, will eventually enable people with spinal cord injuries to restore some of the motor functions that are lost due to injury. Energized by an infrared light beam through an optical fiber located just outside the spinal cord these micro-stimulators will activate the nerves in the spinal cord below the point of injury and thus allow the use of the muscles that were once paralyzed.

This past September, The Journal of Neural Engineering ("FLAMES tested in the rat spinal cord," http://iopscience.iop.org/1741-2552/8/5/056012) published the first testing in animals. "Our in vivo tests suggest that the FLAMES can be used for intraspinal micro-stimulation even for the deepest implant locations in the rat spinal cord," said Sahin.

"The power required to generate a threshold arm movement was investigated as the laser source was moved away from the micro-stimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source." Sahin spoke about this work at the IEEE Engineering in Medicine and Biology Conference in Boston, also in September of 2011.

FLAMES is a semiconductor device that is remotely controlled by an optical fiber attached to a low power near-infrared laser. The device is implanted into the spinal cord, and is then allowed to float in the tissue. There are no attached wires. A patient pushes a button on the external unit to activate the laser, the laser then activates the FLAMES device.

"The unique aspect of the project is that the implanted stimulators are very small, in the sub-millimeter range," Sahin said. "A key benefit is that since our device is wireless, the connections can't deteriorate over time plus, the implant causes minimal reaction in the tissue which is a common problem with similar wired devices."

The electrical activation of the central and peripheral nervous system has been investigated for treatment of neural disorders for many decades and a number of devices have already successfully moved into the clinical phase, such as cochlear implants and pain management via spinal cord stimulation. Others are on the way, such as micro stimulation of the spinal cord to restore locomotion, micro stimulation of the cochlear nucleus, midbrain, or auditory cortex to better restore hearing and stimulation of the visual cortex in the blind subject. All of them, however, are wired, unlike FLAMES, which is not.

Selim Unlu, professor of electrical and computer engineering at Boston University, is working with Sahin. "We hope that once FLAMES advances to the clinical stage, patients paralyzed by spinal injury will be able to regain vital functions," Sahin said.

NJIT, New Jersey's science and technology university, enrolls more than 9,558 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2010 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Office of Continuing Professional Education.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu/

More articles from Medical Engineering:

nachricht NUS scientist designs 'express courier service' for immune cells
07.10.2019 | National University of Singapore

nachricht Optical imager poised to improve diagnosis and treatment of dry eye disease
07.10.2019 | The Optical Society

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>