Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New quantum material could warn of neurological disease

11.04.2019

By speaking the brain's language, the material is a portal between electronics and the brain

What if the brain could detect its own disease? Researchers have been trying to create a material that "thinks" like the brain does, which would be more sensitive to early signs of neurological diseases such as Parkinson's.


The black rectangle beneath these gold rungs is a new quantum material capable of "listening" to the brain by grabbing atoms, which the brain naturally uses to communicate.

Credit: Purdue University image/Hai-Tian Zhang

Thinking is a long way off, but Purdue University and Argonne National Laboratory researchers have engineered a new material that can at least "listen."

The lingua franca is ionic currents, which help the brain perform a particular reaction, needed for something as basic as sending a signal to breathe. Detecting ions means also detecting the concentration of a molecule, which serves as an indicator of the brain's health.

In a study published in Nature Communications, researchers demonstrate the ability of a quantum material to automatically receive hydrogen when placed beneath an animal model's brain slice. Quantum means that the material has electronic properties that both can't be explained by classical physics, and that give it a unique edge over other materials used in electronics, such as silicon.

The edge, in this case, is strong, "correlated" electrons that make the material extra sensitive and extra tunable.

"The goal is to bridge the gap between how electronics think, which is via electrons, and how the brain thinks, which is via ions. This material helped us find a potential bridge," said Hai-Tian Zhang, a Gilbreth postdoctoral fellow in Purdue's College of Engineering and first author on the paper.

In the long run, this material might even bring the ability to "download" your brain, the researchers say.

"Imagine putting an electronic device in the brain, so that when natural brain functions start deteriorating, a person could still retrieve memories from that device," said Shriram Ramanathan, a Purdue professor of materials engineering whose lab specializes in developing brain-inspired technology.

"We can confidently say that this material is a potential pathway to building a computing device that would store and transfer memories," he said.

The researchers tested this material on two molecules: Glucose, a sugar essential for energy production, and dopamine, a chemical messenger that regulates movement, emotional responses and memory.

Because dopamine amounts are typically low in the brain, and even lower for people with Parkinson's disease, detecting this chemical has been notoriously difficult. But detecting dopamine levels early would mean sooner treatment of the disease.

"This quantum material is about nine times more sensitive to dopamine than methods that we use currently in animal models," said Alexander Chubykin, an assistant professor of biological sciences in the Purdue Institute for Integrative Neuroscience, based in Discovery Park.

The quantum material owes its sensitivity to strong interactions between so-called "correlated electrons." The researchers first found that when they placed the material in contact with glucose molecules, the oxides would spontaneously grab hydrogen from the glucose via an enzyme. The same happened with dopamine released from a mouse brain slice.

The strong affinity to hydrogen, as shown when researchers at Argonne National Laboratory created simulations of the experiments, allowed the material to extract atoms on its own - without a power source.

"The fact that we didn't provide power to the material for it to take in hydrogen means that it could bring very low-power electronics with high sensitivity," Ramanathan said. "This could be helpful for probing unexplored environments, as well."

The researchers also say that this material could sense the atoms of a range of molecules, beyond just glucose and dopamine. The next step is creating a way for the material to "talk back" to the brain.

The work was supported by multiple entities, including the Gilbreth Fellowship by the College of Engineering at Purdue University, the National Science Foundation, the Air Force Office for Scientific Research, the National Institute of Mental Health, the Office of Naval Research and the U.S. Department of Energy Office of Science.

This research also aligns with Purdue's Giant Leaps celebration, acknowledging the university's global advancements made in AI and health as part of Purdue's 150th anniversary. This is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

###

ABSTRACT

Perovskite Nickelates as Bio-Electronic Interfaces

Hai-Tian Zhang1,2 , Fan Zuo1, Feiran Li3, Henry Chan4, Qiuyu Wu5, Zhan Zhang6, Badri Narayanan4, Koushik Ramadoss1, Indranil Chakraborty7, Gobinda Saha7, Ganesh Kamath4, Kaushik Roy7, Hua Zhou6, Alexander A. Chubykin5, Subramanian K.R.S. Sankaranarayanan4, Jong Hyun Choi3and Shriram Ramanathan1

1School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
2Lillian Gilbreth Fellowship Program, College of Engineering, Purdue University, West Lafayette, IN 47907, USA
3School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
4Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
5Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana47907, USA.
6X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
7School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

doi: 10.1038/s41467-019-09660-6

Functional interfaces between electronics and biological matter are essential to diverse fields including health sciences and bio-engineering. Here, we report the discovery of spontaneous (no external energy input) hydrogen transfer from biological glucose reactions into SmNiO3, an archetypal perovskite quantum material. The enzymatic oxidation of glucose is monitored down to ~ 5x10-16M concentration via hydrogen transfer to the nickelate lattice. The hydrogen atoms donate electrons to the Ni dorbital and induce electron localization through strong electron correlations. By enzyme specific modification, spontaneous transfer of hydrogen from the neurotransmitter dopamine can be monitored in physiological media. We then directly interface an acute mouse brain slice onto the nickelate devices and demonstrate measurement of neurotransmitter release upon electrical stimulation of the striatum region. These results open up avenues for use of emergent physics present in quantum materials in trace detection and conveyance of bio-matter, bio-chemical sciences, and brain-machine interfaces.

Media Contact

Kayla Wiles
wiles5@purdue.edu
765-494-2432

 @PurdueUnivNews

http://www.purdue.edu/ 

Kayla Wiles | EurekAlert!
Further information:
https://www.purdue.edu/newsroom/releases/2019/Q2/new-quantum-material-could-warn-of-neurological-disease.html
http://dx.doi.org/10.1038/s41467-019-09660-6

More articles from Medical Engineering:

nachricht Synapses in 3D: Scientists develop new method to map brain structures
08.11.2019 | Leibniz-Institut für Photonische Technologien e. V.

nachricht The Screw That Dissolves
06.11.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>