Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LISA: Scientists introduce a new method of statistical inference in neuroimaging (fMRI)

16.10.2018

New method detects brain activations with improved sensitivity and accuracy

One of the principal goals in functional magnetic resonance imaging (fMRI) is the detection of local neuronal activation in the human brain. However, lack of statistical power and inflated false positive rates have recently been identified as major problems in this regard.


This image shows a comparison of LISA against the most commonly used other statistical inference algorithms. Brain activations detected by LISA are better reproducible and are thus more reliable.

Gabriele Lohmann/MPI for Biological Cybernetics (cited in Nature Communications 9:4014 (2018) https://www.nature.com/articles/s41467-018-06304-z

The group of scientists of the Max-Planck-Institute of the Biological Cybernetics and the University Hospital in Tuebingen came up with a new software framework called “LISA” to address these problems.

The most widely used statistical inference procedures were invented more than 10 years ago and are not well suited for handling state-of-the art high-resolution neuroimaging data. MRI technology improved considerably in recent years due to the advent of ultra-high field scanners (>= 7 Tesla) that offer greatly improved spatial resolution.

However, standard algorithms were not designed to handle such high-precision data so that some of the main advantages of ultrahigh-field scanning were lost due to inadequate software. Furthermore, a recent publication by Eklund et al. (PNAS, 2016) showed that some of the most widely used statistical methods sometimes produced incorrect results.

Reasons enough for our scientists to invent better approaches for statistical inference in fMRI. Our scientist Dr. Gabriele Lohmann explains:” Sophisticated mathematical methods are needed in order to make sense of neuroimaging data. The colored 'blobs' that are often depicted in articles on neuroimaging are computed using complicated statistical methods. Without those tools we would not be able to see anything in these data.”

The scientists now introduced a new method of statistical inference in fMRI, which they call LISA (Local Indicators of Spatial Association). It is inspired by a concept otherwise used in geographical information systems. In conclusion, the scientist hope that because of its improved sensitivity and better spatial specificity, LISA will help in developing novel and more realistic models of human brain function.

Lohmann further elaborates: “In our first tests, we found that our method is much more sensitive and can detect brain activity more accurately than previous methods. We are convinced that our method will help to provide a more complete understanding of the brain function.” She is convinced that for the future, the insights gained from this basic research may benefit patients with neurological diseases.

Original Publication:
"LISA improves statistical analysis for fMRI", Gabriele Lohmann, Johannes Stelzer, Eric Lacosse, Vinod J. Kumar, Karsten Mueller, Esther Kuehn, Wolfgang Grodd & Klaus Scheffler, Nature Communications 9:4014 (2018):
https://www.nature.com/articles/s41467-018-06304-z

Interview with Gabriele Lohmann bei meet your scientist: http://www.kyb.tuebingen.mpg.de/press-news-and-events/meet-your-scientist.html

PD. Dr. Gabriel Lohmann works at the Max Planck Institute for Biological Cybernetics at the Magnetic Resonance Centre (MRZ) and the University Hospital in Tuebingen. Her research focuses on the development of new mathematical methods for the analysis of data obtained from the human brain using MRI. She is particularly interested in methods of static inference and the development of network models.

Press Contact:
Beate Fülle
Head of Public Relations and Communication
Phone: +49 7071 601- 777
E-mail: presse-kyb@tuebingen.mpg.de

Picture caption: This image shows a comparison of LISA against the most commonly used other statistical inference algorithms. Brain activations detected by LISA are better reproducible and are thus more reliable."

Source: Gabriele Lohmann/MPI for Biological Cybernetics (cited in Nature Communications 9:4014 (2018) https://www.nature.com/articles/s41467-018-06304-z

The Max Planck Institute for Biological Cybernetics is studying signal and information processing in the brain. The scientists aim to determine which signals and processes are responsible for creating a coherent percept of our environment and for eliciting the appropriate behavior. Scientists of three departments and several research groups are working towards answering fundamental questions about processing in the brain, using different approaches and methods.

The Max Planck Institute for Biological Cybernetics is one of 84 Max Planck Institutes and facilities that make up the Max Planck Society, Germany's most successful research organization. Since its establishment in 1948, no fewer than 18 Nobel laureates have emerged from the ranks of its scientists, putting it on a par with the best and most prestigious research institutions worldwide. All Institutes conduct basic research in the service of the general public in the natural sciences, life sciences, social sciences, and the humanities.
www.kyb.mpg.de

Founded in 1805, the University Hospital Tuebingen is one of the leading centres of German university medicine. As one of 33 University Hospitals in Germany, it contributes to a successful combination of top-level medicine, research, and teaching.

More than 400,000 in- and outpatients from around the world benefit from this connection of science and practice each year, since the clinics, institutes, and centres unite specialists from all fields under one roof. Its experts collaborate across disciplines and offer state-of-the-art research-based treatment to all patients. The University Hospital does research to improve diagnostics, therapies, and healing processes. Many new cutting-edge treatments are clinically tested and applied in Tuebingen.

Neurosciences, Oncology and Immunology, Infection Biology, Vascular Medicine and Diabetes are focus areas of research at the University Hospital Tuebingen. It is a reliable partner in four of the six German Centres for Health Research (DZG) created by the Federal Government. www.medizin.uni-tuebingen.de/en/

Originalpublikation:

"LISA improves statistical analysis for fMRI", Gabriele Lohmann, Johannes Stelzer, Eric Lacosse, Vinod J. Kumar, Karsten Mueller, Esther Kuehn, Wolfgang Grodd & Klaus Scheffler, Nature Communications 9:4014 (2018):
https://www.nature.com/articles/s41467-018-06304-z

Weitere Informationen:

http://www.kyb.mpg.de
http://www.medizin.uni-tuebingen.de/en/
http://www.kyb.tuebingen.mpg.de/press-news-and-events/meet-your-scientist.html

Presse- und Öffentlichkeitsarbeit | Max-Planck-Institut für biologische Kybernetik

More articles from Medical Engineering:

nachricht Artificial intelligence can speed up the detection of stroke
31.03.2020 | University of Turku

nachricht Thermopiles for non-contact temperature measurement at humans
31.03.2020 | CiS Forschungsinstitut für Mikrosensorik GmbH

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>