Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster detection of atrial fibrillation thanks to smartwatch

18.03.2019

Atrial fibrillation can be correctly detected using commercially available smartwatches. This is the conclusion of a study by researchers of the German Centre for Cardiovascular Research (DZHK) at the University Medicine Greifswald and researchers from the Basel University Hospital. In the future, electronic watches could be used to comfortably and regularly monitor the heart rhythm of patients with an increased risk. This tool has the potential to detect atrial fibrillation earlier and thus reduce the risk for a stroke significantly.

Atrial fibrillation is the most common cardiac arrhythmia. Experts expect that it will occur even twice as often in the over 55's in the next 40 years. If the heart gets our of rhythm, the risk of stroke increases.


A smartwatch using an app which can record heart rhythm to detect atrial fibrillation.

Source: PREVENTICUS GmbH, Jena

However, the use of anti-coagulants can reduce this risk by up to 70 percent. The problem with this is, that atrial fibrillation frequently goes undetected and thus untreated, because it often occurs intermittently and doesn't cause any symptoms.

It is known that atrial fibrillation can be more frequently detected in a timely manner through increased and extended screenings of the cardiac rhythm.

Professor Marcus Dörr from the University Medicne Greifswald and his Swiss colleagues from the Basel University Hospital were able to show that smartwatches offer a good option to comfortably and relatively easily monitor the heart rhythm.

In a prospective controlled study, they examined 508 people with and without atrial fibrillation to see whether a smartwatch with an app to record the heart rhythm can accurately detect atrial fibrillation. For this purpose, the recordings from the smartwatches were analysed using an automated algorithm with regard to the presence of atrial fibrillation.

The results were compared to a mobile electrocardiogram (ECG) device, in which two fingers from the right and left hands are laid on an electrode for measurement. These ECGs were subsequently evaluated by cardiologists who had no further information about the participants.

The trial showed that the smartwatch could detect atrial fibrillation at least as well and as accurately as the mobile ECG. “It was particularly important that not too many false positive results were found by the app. “So atrial fibrillation was displayed, if in fact there was none", says Dörr. “Because this would result in unnecessary examinations and costs.”

Signal interference through movement
However, there were problems with the quality of the signal. Usually these disruptions occurred when the wearer were moving. Then the smartwatch could not always correctly capture the heart rhythm. In the study, the researchers were not able to analyse 20 percent of the data due to poor signal quality.

“A possible solution could be having multiple automated recordings of the heart rhythm at night, when wearers move less frequently, in addition to the improvement of the algorithm", says DZHK investigator Dörr. The study also showed that a repeated one-minute recording suffices to reliably detect cardiac arrhythmias. Also, an extended recording interval of three or five minutes did not produce better results.

Smartwatch could fill diagnostic gap
However, before the smartwatch can actually be used for screening of high-risk patients, further clinical trials are required. An EU-financed study is already underway, to investigate whether a smartwatch can reliably detect asymptomatic atrial fibrillation in higher risk patients.

Currently, patients with an increased risk of atrial fibrillation undergo a long-term ECG, which records the heart rhythm for up to 72 hours. If no abnormalities are detected during this period, one can theoretically stop monitoring the heart rhythm, according to the medical guidelines. If the risk is very high, small implantable event recorders behind the sternum can be surgically implanted in selected cases.

An expensive and invasive method. Other external devices for rhythm monitoring are expensive and often not reimbursed by health insurance. A smartwatch is comparably inexpensive and can be purchased by everyone, in theory. It may therefore close the gap between the long-term ECG and an implanted devices in the future.

Wissenschaftliche Ansprechpartner:

Contact: Professor Marcus Dörr, Department of Internal Medicine B, University Medicine Greifswald & German Centre for Cardiovascular Research, partner site Greifswald, mdoerr(at)uni-greifwald.de

Originalpublikation:

Original work: The WATCH AF Trial: SmartWATCHes for Detection of Atrial Fibrillation.
Dörr M, Nohturfft V, Brasier N, Bosshard E, Djurdjevic A, Gross S, Raichle CJ, Rhinisperger M, Stöckli R, Eckstein J. JACC Clin Electrophysiol. 2019 Feb;5(2): 199-208. Epub 2018 Nov 28. DOI:10.1016/j.jacep.2018.10.006.

Weitere Informationen:

https://dzhk.de/aktuelles/news/artikel/vorhofflimmern-rechtzeitig-erkennen-dank-...

Constanze Steinke | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht Smartphones as ophthalmoscopes save sight: Cost-effective telemedical eye screening of people with diabetes in India
09.07.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Shorter courses of proton therapy can be just as effective as full courses prostate cancer
08.07.2019 | University of Pennsylvania School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>