Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green wave in Muenster: Adaptive signal control from Siemens offers car drivers a 30 percent improvement in flow of traffic

30.03.2009
One of Siemens Mobility’s central themes at the UITP exhibition in Vienna will be solutions for road traffic.

Representative of these solutions will be the “green wave for Muenster”, where road users benefit from a succession of green lights more frequently thanks to the Sitraffic Motion adaptive network control system.

Since the middle of last year, the new procedure analyzes the current traffic situation on a main artery and then automatically optimizes the red-green phases of the traffic signals at the 24 intersections on this road. The result is an average 30 percent reduction of driver waiting times at traffic lights.

This figure was corroborated by a study done by Ruhr-Universität Bochum and published at the beginning of 2009. Fuel consumption and exhaust emissions are reduced as well. These results certainly convinced the people of Muenster, and the city council has decided to link up a second main traffic artery to the Sitraffic Motion system in the near future.

Starting in 2006, Siemens installed the Sitraffic Motion traffic control system at 24 traffic signal-controlled intersections on the heavily traveled Albersloher Weg in Muenster. This was done in connection with a new traffic computer system. By means of detectors mounted in the approach roads, Sitraffic Motion determines how many vehicles are underway, where they turn off and where there is an imminent threat of congestion.

A central traffic computer receives the data, analyzes the traffic situation at the intersections along the six-kilometer-long road in 15 to 20 minute cycles and automatically adapts the lengths of the red-green phases of the traffic signals as well as the green wave accordingly. In June 2008, installation on the road used as a model was completed. The result: traffic flows more smoothly, there are fewer stops, and waiting times for car drivers are shorter. Fuel consumption and exhaust emissions are also reduced as a consequence.

The success of the new method has been confirmed by a representative study carried out by Ruhr-Universität Bochum. The study compared the three development stages of the traffic system in use on Albersloher Weg: the original situation with fixed time control, the conventionally planned, traffic-dependent control unit in the individual traffic signal installations and, finally, the Siemens approach in the form of the traffic-adaptive control system, also referred to as a model-based system. The team surrounding Prof. Werner Brilon at the university’s Institute for Transportation and Traffic Engineering used values from their own measurements with detectors, GPS (Global Positioning System) and video vehicles as well as the telematics data of the city’s public transit system.

“The level of improvement has been unexpectedly high,” summarized the authors of the study, who went on to say that the adaptive control system brought about a further improvement in traffic quality compared to a traffic-dependent control method.

In view of the excellent success achieved in Albersloher Weg, the Muenster city council decided to equip another busy road with the new control system from Siemens in a subsequent construction phase.

You can download the study at the following link (available in German only):

http://www.muenster.de/stadt/stadtplanung/pdf/albersloher-weg_lsa_bericht2009-01.pdf

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Industry Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 222,000 employees worldwide, Siemens Industry posted a profit of EUR 3.86 billion with revenues totaling EUR 38 billion in fiscal year 2008 (ended September 30).

The Mobility Division (Erlangen, Germany) is the internationally leading provider of transportation and logistics solutions. With its "Complete mobility" approach, the Division is focused on networking the various modes of transportation in order to ensure the efficient transport of people and goods. “Complete mobility” combines the company's competence in operations control systems for railways and traffic control systems for roadways together with solutions for airport logistics, postal automation, traction power supplies and rolling stock for mass transit, regional and mainline services, turnkey systems as well as forward-looking service concepts.

Siemens AG
Corporate Communications and Government Affairs Wittelsbacherplatz 2,
80333 Munich
Germany
Reference number: IMO200903.025 e fp

Anja Uhlendorff | Siemens Industry Sector
Further information:
http://www.siemens.com/industry
http://www.siemens.com/mobility

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>