Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘White-eyes’ Form New Species Faster than Any Other Bird

28.01.2009
Island-dwelling white-eyes have long been dubbed “great speciators” for their apparent ability to rapidly form new species across geographies where other birds show little or no diversification.

A family of island-dwelling birds form new species faster than any other known bird, according to a University of Kansas researcher who used modern genetic techniques to answer an 80-year-old question about how fast new bird species can form.

New data show that birds in the family Zosteropidae — commonly known as white-eyes for the ring of white feathers around their eyes — have formed new species faster than any known bird.

Some island-dwelling white-eyes have long been dubbed “great speciators” for their apparent ability to rapidly form new species across geographies where other birds show little or no diversification, said Rob Moyle, ornithology curator at KU’s Biodiversity Institute and an author of a study of white-eyes published the week of Jan. 26.

Moyle, along with Chris Filardi of the American Museum of Natural History; Catherine Smith of the University of Washington; and Jared Diamond of the University of California-Los Angeles, has been able to reconstruct key aspects of these birds’ evolutionary history using genetic analyses. The authors used DNA sequences and a variety of analytical methods to determine that most of the family speciated at rates among the fastest of any known vertebrate.

More than 100 species in the family have spread across vast regions from Asia to Africa and to far-flung islands. Despite this ability to disperse over long distances, some species remain separated by water gaps as narrow as 2.2 kilometers and yet show no inclination to cross.

“As we started to compile the data, we were shocked,” said Moyle. “White-eye species from across the family’s range had strikingly similar gene sequences, indicating a recent origin and incredibly rapid diversification.”

The authors of the study, published in the prominent journal Proceedings of the National Academy of Sciences, assert that traits of white-eyes may have helped them diversify. These include sociability and the ability to survive in a variety of habitats. Some species also may have become more sedentary and unwilling to cross narrow water gaps.

The idea of “great speciators” has been gestating for nearly 80 years. Ernst Mayr and Diamond coined the term after they had observed birds in the Solomon Islands. Each island the men visited had a different white-eye species, whereas the species of other birds did not vary across the archipelago. They proposed that the variation was driven by traits intrinsic to white-eyes.

“I am delighted to see this molecular evidence supporting ideas that I had only been able to guess at over the last several decades,” said Diamond, a professor in the geography department at UCLA. “I know that Ernst Mayr, if he had still been alive, would have been delighted at this confirmation 78 years after he visited the Solomons.”

Jen Humphrey | Newswise Science News
Further information:
http://www.ur.ku.edu/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>