Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UZH scientists predict activity of human genes

18.12.2015

Genetically identical sibling cells do not always behave the same way. So far this has been attributed to random molecular reactions. Now systems biologists of the University of Zurich have discovered an overlooked consequence of the spatial separation of cells into a nucleus and a cytoplasm. Building on top of this insight they could predict with supercomputers the activity of genes in individual human cells.

Genetically identical cells do not always behave the same way. According to the accepted theory, the reason are random molecular processes – known as random noise. For decades this view has been underpinned by numerous experiments and theoretical models.

Now the system biologists of the University of Zurich have made a momentous discovery: The spatial separation of human cells into a nucleus and cytoplasm creates some kind of passive filter. This filter suppresses the random noise and enables human cells to precisely regulate the activity of individual genes.

Observed more randomness in the nucleus

While the observations of Lucas Pelkmans and his team initially seemed at odds with current text-book knowledge, a second look revealed the missing explanation. During the activation of genes, the genetic information, which has been stored in DNA, becomes transcribed to messenger RNA.

“We could perfectly predict the messenger RNA in the cytoplasm and discovered much more randomness within the nucleus” explains Nico Battich, coauthor and PhD student at Institute of Molecular Biology. “One could envision the nucleus to act as a leaky bucket that on the one hand withholds messenger RNA, but on the other hand enables a delayed and even outflow. Thus the activity of genes in the cytoplasm becomes highly robust against random noise during the formation of messenger RNA in the nucleus.”

Smallest physiological details made visible

Thanks to their novel method, the Zurich scientists were the first ones who could study that many human genes. They managed to detect every single molecule that is produced by active genes. ”Previously one could only study few genes and in many cases these genes had to be genetically modified by researchers” says PhD student Thomas Stoeger.

“We realized that the activity of genes strongly differed between single cells, but could at the same time predict the activity for every single cell by visualizing subtle physiological details with microscopic dyes.”

The findings of the Zurich scientists impact several fields. “For example, evolutionary biology, where the spatial separation of cells marks a milestone in the emergence of intelligent life. But also biotechnology, where a precise control over artificial genes is desirable, and human medicine, if it should become possible to predict which malignant cells will respond to drugs.” concludes Prof. Lucas Pelkmans.

Literature:
Nico Battich, Thomas Stoeger, Lucas Pelkmans. Control of Transcript Variability in Single Mammalian Cells. Cell. December x, 2015. Doi: 10.1016/j.cell.2015.11.018

Contact:
Prof. Lucas Pelkmans
Institute of Molecular Life Sciences
University of Zurich
Phone +41 44 635 31 23
E-mail: lucas.pelkmans@imls.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/index_en.html

Melanie Nyfeler | Universität Zürich

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

How skin cells protect themselves against stress

12.12.2018 | Life Sciences

Copper compound as promising quantum computing unit

12.12.2018 | Life Sciences

New approach towards an improved treatment of anxiety disorders

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>