Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toads Anticipate the Timing and Impact of Their Landings

09.02.2010
Humans may not have a leg up on toads, at least not when it comes to jumping and landing, according to new research by Gary B. Gillis, associate professor of biology at Mount Holyoke College.

In a paper published February 3 in the Royal Society journal Biology Letters, Gillis shows that toads, like humans, are capable of anticipating when and how hard they’re going to land after a jump and activating muscles important in absorbing impact accordingly.

The paper, titled "Do Toads Have a Jump on How Far They Hop...," was co-authored by Gillis and two Mount Holyoke undergraduates, Trupti Akella '09 and Rashmi Gunaratne '10.

Until now, such prescient limb muscle activity has only been demonstrated in mammals, but Gillis and his team showed that hopping toads can alter both the intensity and timing of activity in muscles used to stabilize their forelimbs on impact. In long hops, when impact forces are known to be higher, elbow muscles exhibited more intense activity just prior to landing than during short hops. In addition, one major elbow muscle was always activated at a fixed interval prior to landing in all hops, regardless of distance, suggesting that toads not only gauge how hard they’re going to hit the ground, but also anticipate precisely when that will happen.

“We believe this data represents the first demonstration of tuned pre-landing muscle use in anurans (frogs and toads)," said Gillis. "It raises questions about how widespread this ability is among other species and how important feedback from various sensory systems--e.g., vision--is for mediating this ability."

This coming summer, Gillis and his students will be conducting similar experiments on different species of frogs to determine if their findings are unique to toads or common in anurans. They will also be making a blindfold for toads so they can test Gillis's hypothesis that vision is necessary for these animals to anticipate the timing and magnitude of impact.

Gillis, who has been a member of the College faculty since 2002, specializes in research on the biomechanics and neuromuscular control of animal locomotion.

Related Links:

Faculty profile
http://www.mtholyoke.edu/acad/misc/profile/ggillis.shtml
MHC's Gillis Finds Tailless Lizards Lose Agility
http://home.mtholyoke.edu/news/stories/5681124
The Royal Society
http://royalsociety.org/
Gary B. Gillis
ggillis@mtholyoke.edu
413-538-3319

Gary B. Gillis | Newswise Science News
Further information:
http://www.mtholyoke.edu

Further reports about: anurans elbow muscle limb muscle activity toads

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>