Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Up- and Downside of Caloric Restriction for Aging and Health

14.03.2016

It’s already well known that a diet may have a life-extending effect. Researchers from Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, now showed that besides improving the functionality of stem cells in mice, a caloric restriction also leads to a fatale weakening of their immune system – counteracting the life-lengthening effect of a diet. The results are published in the Journal of Experimental Medicine on March, 14. 2016.

Only few years ago, researchers succeeded in prolonging the lifespan of worm C. elegans, fruit fly D. melongaster and rats by almost 50% through a simple caloric restriction – which immediately fueled hopes for having found one key to a longer life also for humans.


Caloric restriction in mice weakens the immune system.

[Graphic: K. Wagner / FLI; Source: www.istockphoto.com / www.panthermedia.net]

However, transferring these results to long-lived primates short after was not equally successful and cooled down enthusiasms quite quickly. Now, aging researcher Karl Lenhard Rudolph, Scientific Director at the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, and his team showed that caloric restriction even has a severe downside.

In feeding experiments, the stem cells of mice, which were set on a diet, were found to age slower – but the murine immune system was almost completely cut down. Outside of optimal, sterile laboratory conditions, this could lead to severe live-shortening infections. The results of the study are published in the Journal of Experimental Medicine’s current issue.

Caloric restriction slows down the aging of blood stem cells

The study focused on the effects of caloric restriction on blood stem cells (so-called hematopoietic stem cells, HSC) that are responsible for building red blood cells or lymphocytes (immune cells). Like for any other adult stem cell, HSC functionality decreases with every single cell division – the stem cells age. This is why they stay in a resting phase (quiescence) most of the time and are only activated when a massive cell reproduction is required (e.g. after acute blood loss).

In their study, the researchers from Jena investigated how a 30% food restriction effects stem cell aging in mice. One main result was that the HSC stayed in a quiescent state even if simulated stress would have required their activation. This effect was found regardless of how long the diet lasted. Thus, during diet, the blood stem cells did not age at all and their functionality to build new blood cells remained increased even one year after diet.

Caloric restriction weakens the immune system

But the long-term diet had a downside, as well: The mice’s immune system almost completely was cut down. Although the diet had no strong effect on the overall cell number of blood cells, the production of lymphocytes – needed for immune defense – was decreased by up to 75%. As a consequence, mice were particularly prone to bacterial infections.

Slowing down aging under laboratory conditions is not yet transferable to humans

“The study provides the first experimental evidence that long-term caloric restriction – as intervention to slow down aging – increases stem cell functionality, but results in immune defects in the context of prolonged bacterial infection, too. Thus, positive effects of a diet are not transferable to humans one to one”, Rudolph sums up the study results. Even if – under laboratory conditions – aging of single cells or tissues may be slowed down through a diet, the immune suppression may have fatal consequences in real life. To benefit from caloric restriction or medicinal mimetika aiming at increasing health in the elderly, possible risks of such interventions to come down with life-threatening infections remain to be elucidated. „In sepsis patients, we see a higher survival rate for those with a higher body weight than for patients who are very lean“, Prof. Dr. Michael Bauer, Director of the Center for Sepsis Control and Care at University Hospital Jena (UKJ), concurs.

Publication
Tang D, Tao S, Chen Z, Koliesnik IO, Gebert N, Calmes PG, Hörr V, Löffler B, Morita Y, Rudolph KL. Long-term dietary restriction improves repopulation but impairs lymphoid differentiation capacity of aging hematopoietic stem cells. Journal of Experimental Medicine 2016, 13 (4). doi: 10.1084/jem.20151100

Contact

Dr. Evelyn Kästner
Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)
Beutenbergstr. 11, D-07745 Jena
Tel.: + 49 3641-656373, E-Mail: presse@leibniz-fli.de

Note
The provided image material can be used only in connection with this press release [Source: www.istockphoto.com  / www.panthermedia.net ].


Background information

The Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.leibniz-fli.de.

The Leibniz Association connects 88 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.leibniz-fli.de - Website Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Study provides insight into how nanoparticles interact with biological systems
22.10.2018 | Northwestern University

nachricht New technique reveals limb control in flies -- and maybe robots
22.10.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

Superflares from young red dwarf stars imperil planets

22.10.2018 | Physics and Astronomy

Accurate evaluation of chondral injuries by near infrared spectroscopy

22.10.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>