Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hidden side of sulfur

14.12.2016

Synthetic organic chemistry consists of transforming existing molecules into new molecular structures or assemblies. These new molecular systems are then used in a myriad of ways in everyday life - in a wide range of sectors, such as public health, energy and environment, for use in drugs, solar cells, fragrances, and so on.

The active element in the molecule that initiates these transformations, known as the catalyst, is often hydrogen. However, a research team at the University of Geneva (UNIGE), Switzerland, has found that a sulfur atom, if carefully inserted into a molecule, can not only become an extremely effective catalyst but can also operate with greater precision. This discovery, published in Angewandte Chemie, has the potential to revolutionize the world of synthetic organic chemistry. It paves the way for the creation of new molecules that can be used in our daily life.


Highly electron-deficient, dark blue holes appear on the surface of sulfur atoms in the SF2 molecule, and on one of the best of the 'sulfurous' catalysts created by Professor Matile's group.

Credit: ©UNIGE

Creativity in fundamental research in chemistry consists of finding new ways to transform molecules and to build new molecular structures. To achieve this, the starting molecule needs to undergo a series of transformations until the molecular architecture of interest is achieved.

However, a molecule does not just change by itself - it has to be pushed by another molecule, the so-called catalyst. In nature, enzymes play this catalytic role. In chemistry and biology, the active element in catalysts is often the smallest possible atom - hydrogen.

"When we want to carry out a molecular transformation, we frequently use the hydrogen bond," explains Stefan Matile, Professor in the Department of Organic Chemistry in the Faculty of Science at UNIGE, and director of the research project. "More precisely, we place the molecule that we want to transform, known as the substrate, in contact with hydrogen. The catalyst then attracts negative charge from the substrate, to the point where the molecule is so poor in negative charges that it is forced to seek contact with another substrate and, in order to maintain itself, to transform." Hydrogen can be thought of as a vacuum cleaner that aspirates negative charges until the molecules are forced to come together and transform to compensate for the loss.

Sulfur increases precision

Professor Matile's team is interested in using bonds other than hydrogen bonds for catalysis and other activities. Most chemists consider these to be rather esoteric with little importance in the area of molecular transformation. However, when looking more closely at the sulfur atom in certain molecules, the UNIGE research team realized that the atom has a very localized area where it is extremely deficient in electrons, a sort of 'black hole'.

The team wanted to know whether this hole could act as a 'vacuum cleaner', like hydrogen, if it were placed in contact with a substrate. If this were the case, sulfur could be used as a catalyst, causing molecules to transform themselves. This somewhat unorthodox bond, known as a chalcogen bond, would thus replace the conventional hydrogen bond.

As Professor Matile further explains: "To test our hypothesis, we created and tested a series of molecular structures using chalcogen bonds of gradually increasing strength. We noticed that they not only work, but that they increase the speed of the transformation by more than a thousand times, as when there is no catalyst. Additionally, we achieved a degree of precision that is impossible with hydrogen bonds." In fact, hydrogen's entire surface is 'electron poor'.

Thus, when it is playing the role of catalyst, the entire atom can come into contact with the substrate and suck up negative charges all over. However, with sulfur, only a small area can act as catalyst. This will enable chemists to be more precise in bringing the catalyst and substrate into contact, and thereby to exercise increased control over the transformation. This has the potential to revolutionize synthetic organic chemistry.

This discovery puts a new tool in the hands of chemists. It proves that it is now possible to use different approaches to carry out molecular transformations, and it opens up entirely new perspectives to the world of synthetic chemistry. Professor Matile's group will now attempt to build molecules that are not accessible with conventional hydrogen bonds. This opens the door for the creation of new materials.

Media Contact

Stefan Matile
Stefan.Matile@unige.ch
41-223-796-523

 @UNIGEnews

http://www.unige.ch 

Stefan Matile | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>