Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genetic transmission of gene locks

20.03.2017

Although all cells in an organism contain the same genes, only some of the genes are activated in a given cells and others remain inactive. Genes coil around histone proteins in the form of DNA threads. If a gene has to remain inactive, its histones are marked by the PRC2 enzyme so that this gene is locked down and cannot be read. When cells divide and the genes are copied, these histone marks must be placed again, at exactly the same location. The mechanism that enables transmission of this information has now been explained by Jürg Müller from the Max Planck Institute of Biochemistry in Martinsried in a study published in the journal Science.

In animals and plants, the genomic DNA in the cell nucleus is wrapped around small proteins known as histones. Jürg Müller, Leader of the Biology of Chromatin Research Group at the MPI of Biochemistry explains: “The DNA is like a big library of books. Each book contains the instruction manual for making a protein. Although the same DNA library is present in all cells, some of the books are ‘sealed’, so they cannot be read. A muscle cell requires other protein-building instructions than an intestinal cell.”


Like a sealed book, some genes from the DNA library cannot be read as, depending on the cell type, only certain genes are needed. The enzyme PRC2 helps with the “sealing” of genes in the cells.

Illustration: Monika Krause © MPI of Biochemistry

An essential mechanism to prevent the expression of genes relies on the chemical marking of histone proteins to permanently “lock down” genes. In the current study, Müller and his team examined how such gene locks are transmitted during cell division.

Histones play a key role in determining how accessible a gene is. When genes need to be permanently locked down, their histones are chemically modified by the enzyme PRC2. “If we imagine the histones as the binder of the book, PRC2 helps to seal that book and prevent that it gets opened and read,” explains Müller.

During cell division, the information about whether a gene needs to remain active or inactive in a given cell has to be transmitted to the daughter cells – or, to continue with the metaphor: All books must be copied and the two copies of certain books must remain sealed. However, the histones available in the mother cell are not sufficient for this and new histones must be added - so that the books do not fall apart.

“We investigated how marked histone proteins present at a gene are distributed during cell division and how newly incorporated histones then become marked by PRC2,” says Müller. The scientists discovered that marked histones are distributed in a random manner to the two gene copies in daughter cells. PRC2 then must first bind to specific sequences in the DNA of that gene in order to mark the new histones.

“If that DNA, called Polycomb Response Element, is removed from a gene, PRC2 cannot mark the new histones and the only marked histones left are the ones from the mother cell. So with each cell division, the amount of marked histones is further diluted and, after a few divisions, they are completely eliminated,” explains Friederike Laprell, first author of the study.

When a cell cannot keep certain books sealed and the instructions in those books become available to a cell, the cell quickly starts to lose or change its identity - a process that results in diseases like cancer. “So it is PRC2 together with the Polycomb Response Element DNA that is present in certain genes that ensures that cells can maintain and propagate their identity for many cell generations,” summarizes Müller.

Original publication:
F. Laprell, K. Finkl and J. Müller: Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA, Science, March 2017
DOI: 10.1126/science.aai8266

Contact:
Dr. Jürg Müller
Chromatin Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: muellerj@biochem.mpg.de
www.biochem.mpg.de/mueller

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en - homepage max planck institute of biochemistry
http://www.biochem.mpg.de/en/rg/mueller - homepage Jürg Müller

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>