Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Brain Does not Follow the Head

15.10.2019

The human brain is about three times the size of the brains of great apes. This has to do, among other things, with the evolution of novel brain structures that enabled complex behaviors such as language and tool production. A study by anthropologists at the University of Zurich now shows that changes in the brain occurred independent of evolutionary rearrangements of the braincase.

The human brain is like a fish in an aquarium, floating inside the liquid-filled braincase – but filling it out almost completely. The relationship between the brain and the braincase, and how they interacted during human evolution, has been occupying the minds of researchers for almost a century.


CT/MRI datasets of a human (left), chimpanzee (center), and gorilla (right).

J.L. Alatorre Warren, UZH

They addressed this question by studying brain-braincase relationships in our own species, and in our closest living relatives, the great apes.

Quantifying spatial relationships between brain and cranial structures

José Luis Alatorre Warren, researcher at the Department of Anthropology of the University of Zurich, tackled this question using computed tomography (CT) and magnetic resonance imaging (MRI) data from humans and chimpanzees. By combining CT/MRI data, he was able to quantify the spatial relationships between brain structures such as gyri (convolutions) and sulci (furrows) on the one hand, and cranial structures such as bony sutures on the other.

The results show that the characteristic spatial relationships between brain and bone structures in humans are clearly distinct to those in chimpanzees. While the brain and its case continued to evolve side by side, they did so along largely independent evolutionary paths.

Bipedalism leads to changes in braincase

For example, brain structures related to complex cognitive tasks such as language, social cognition and manual dexterity expanded significantly in the course of human evolution. This becomes visible as a shift of the neuroanatomical boundaries of the frontal lobe of the brain. This shift, however, did not affect the bony structures of the braincase.

Instead, changes in the braincase largely reflect adaptations to walking upright on two legs, or bipedalism. For example, the opening at the skull base for the spinal cord moved forward during human evolution in order to optimize balance of the head atop the vertebral column. However, these evolutionary changes to the braincase did not have an effect on our cerebral structures.

Point of reference for future research

“The brain followed its own evolutionary path of neural innovation while freely floating in the braincase,” summarizes Alatorre Warren. “The position and size of braincase bones thus don’t enable us to draw conclusions about evolutionary changes in the size or rearrangement of adjacent brain regions.”

Co-authors Marcia Ponce de León and Christoph Zollikofer believe their study’s data provide an important point of reference for future research: “Having answered the brain-braincase question for humans and great apes, we can now take a fresh look at the braincases of fossil hominids.”

Wissenschaftliche Ansprechpartner:

Department of Anthropology
University of Zurich

Prof. Dr. Christoph Zollikofer
Phone: +41 44 635 54 27
zolli@aim.uzh.ch

Dr. José Luis Alatorre Warren
Phone: +41 79 196 75 90
luis.warren@aim.uzh.ch

Originalpublikation:

José Luis Alatorre Warren, Marcia S. Ponce de León, William D. Hopkins, and Christoph P. E. Zollikofer. Evidence for independent brain and neurocranial reorganisation during hominin evolution. PNAS, 14 October 2019. DOI: 10.1073/pnas.1905071116

Weitere Informationen:

https://www.media.uzh.ch/en/Press-Releases/2019/Braincase.html

Rita Ziegler | Universität Zürich

More articles from Life Sciences:

nachricht Pinpointing Pollutants from Space
15.11.2019 | Max-Planck-Institut für Chemie

nachricht Chemists use light to build biologically active compounds
15.11.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New laser opens up large, underused region of the electromagnetic spectrum

15.11.2019 | Power and Electrical Engineering

NASA sending solar power generator developed at Ben-Gurion U to space station

15.11.2019 | Power and Electrical Engineering

Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems

15.11.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>