Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting tumors using tiny gold particles

06.05.2009
Gold nanorods could detect, treat cancer

It has long been known that heat is an effective weapon against tumor cells. However, it's difficult to heat patients' tumors without damaging nearby tissues.

Now, MIT researchers have developed tiny gold particles that can home in on tumors, and then, by absorbing energy from near-infrared light and emitting it as heat, destroy tumors with minimal side effects.

Such particles, known as gold nanorods, could diagnose as well as treat tumors, says MIT graduate student Geoffrey von Maltzahn, who developed the tumor-homing particles with Sangeeta Bhatia, professor in the Harvard-MIT Division of Health Sciences and Technology (HST) and in the Department of Electrical Engineering and Computer Science, a member of the David H. Koch Institute for Integrative Cancer Research at MIT and a Howard Hughes Medical Institute Investigator.

Von Maltzahn and Bhatia describe their gold nanorods in two papers recently published in Cancer Research and Advanced Materials. In March, von Maltzahn won the Lemelson-MIT Student Prize, in part for his work with the nanorods.

Cancer affects about seven million people worldwide, and that number is projected to grow to 15 million by 2020. Most of those patients are treated with chemotherapy and/or radiation, which are often effective but can have debilitating side effects because it's difficult to target tumor tissue.

With chemotherapy treatment, 99 percent of drugs administered typically don't reach the tumor, said von Maltzahn. In contrast, the gold nanorods can specifically focus heat on tumors.

"This class of particles provides the most efficient method of specifically depositing energy in tumors," he said.

Wiping out tumors
Gold nanoparticles can absorb different frequencies of light, depending on their shape. Rod-shaped particles, such as those used by von Maltzahn and Bhatia, absorb light at near-infrared frequency; this light heats the rods but passes harmlessly through human tissue.

In a study reported in the team's Cancer Research paper, tumors in mice that received an intravenous injection of nanorods plus near-infrared laser treatment disappeared within 15 days. Those mice survived for three months with no evidence of reoccurrence, until the end of the study, while mice that received no treatment or only the nanorods or laser, did not.

Once the nanorods are injected, they disperse uniformly throughout the bloodstream. Bhatia's team developed a polymer coating for the particles that allows them to survive in the bloodstream longer than any other gold nanoparticles (the half-life is greater than 17 hours).

In designing the particles, the researchers took advantage of the fact that blood vessels located near tumors have tiny pores just large enough for the nanorods to enter. Nanorods accumulate in the tumors, and within three days, the liver and spleen clear any that don't reach the tumor.

During a single exposure to a near-infrared laser, the nanorods heat up to 70 degree Celsius, hot enough to kill tumor cells. Additionally, heating them to a lower temperature weakens tumor cells enough to enhance the effectiveness of existing chemotherapy treatments, raising the possibility of using the nanorods as a supplement to those treatments.

The nanorods could also be used to kill tumor cells left behind after surgery. The nanorods can be more than 1,000 times more precise than a surgeon's scalpel, says von Maltzahn, so they could potentially remove residual cells the surgeon can't get.

Finding tumors
The nanorods' homing abilities also make them a promising tool for diagnosing tumors. After the particles are injected, they can be imaged using a technique known as Raman scattering. Any tissue that lights up, other than the liver or spleen, could harbor an invasive tumor.

In the Advanced Materials paper, the researchers showed they could enhance the nanorods' imaging abilities by adding molecules that absorb near-infrared light to their surface. Because of this surface-enhanced Raman scattering, very low concentrations of nanorods - to only a few parts per trillion in water [gf1]- can be detected.

Another advantage of the nanorods is that by coating them with different types of light-scattering molecules, they can be designed to simultaneously gather multiple types of information - not only whether there is a tumor, but whether it is at risk of invading other tissues, whether it's a primary or secondary tumor, or where it originated.

Bhatia and von Maltzahn are looking into commercializing the technology. Before the gold nanorods can be used in humans, they must undergo clinical trials and be approved by the FDA, which von Maltzahn says will be a multi-year process.

Other authors of the Advanced Materials paper are Andrea Centrone, postdoctoral associate in chemical engineering; Renuka Ramanathan, undergraduate in biological engineering; Alan Hatton, the Ralph Landau Professor of Chemical Engineering; and Michael Sailor and Ji-Ho Park of the University of California at San Diego.

Park and Sailor are also authors of the Cancer Research paper, along with Amit Agrawal, former postdoctoral associate in HST; and Nanda Kishor Bandaru and Sarit Das of the Indian Institute of Technology Madras.

The research was funded by the National Institutes of Health, the Whitaker Foundation and the National Science Foundation. Nanopartz Inc. supplied gold nanoparticles, gold nanowires and the precursor gold nanorods used in this work.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>