Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish Researchers will Employ Microscopic Clay Minerals to Design More Efficient and Less Toxic Drugs

05.07.2012
University of Granada and the Spanish Consejo Superior de Investigaciones Científicas (CSIC) researchers will use nanoscopic clay for the controlled release of drugs in patients, with the aim of designing more efficient and less toxic drugs. This is a pilot research study that includes CSIC and University of Granada researchers and researchers from other institutions.
This project is based on a research on the adsortion and desorption of bioactive molecules on clay mineral surface. The goal is to design and develop new nanofunctional materials of natural origin that enable the controlled release of bioactive molecules, which is more environmentally-friendly that other synthetic systems.

This interdisciplinary research study has been funded by the University of Granada Campus of International Excellence BioTic. A total of six Andalusian research groups from different scientific fields –computational modeling of clay minerals, galenic development, natural resources, environmental evaluation and in vivo studies of bioactive substances– have participated in this study. In addition, an Andalusian company specialised in microencapsulated materials has also contributed to the study.

This project was coordinated by the University of Granada professor César Viseras Iborra and the CSIC researcher Ignacio Sainz Díaz. The study embraces, among other, atomistic computational studies, the preparation and characterization of materials at microscopic level, and their application to in vivo tests.

A number of institutions and companies have contributed to this study, as the Escuela Andaluza de Salud Pública, the Andalusian company LAIMAT and the Commissariat à l´Énergie Atomique in Grenoble, which are all aggregated to the CEI-BioTic.

Viseras Iborra and Sainz Díaz state that "the collaboration of scientific and technical experts will promote new collaborations in the future and will enable the development of new applications of clay minerals as the base of new nanofunctional materials".

http://canal.ugr.es/health-science-and-technology/item/58579

Carlos Centeno Cuadros | alfa
Further information:
http://www.ugr.es

More articles from Life Sciences:

nachricht Happy hour for time-resolved crystallography
17.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>