Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sentinels of the Genome

16.03.2018

A comprehensive resource reveals dynamics of 70 DNA repair proteins - a powerful platform for basic research and anticancer drug evaluation.

Throughout life, DNA is constantly being damaged by environmental and intrinsic factors and must be promptly repaired to prevent mutations, genomic instability, and cancer. Different types of damages are repaired by numerous proteins organized into damage-specific pathways.


Recruitment of two proteins to the sites of DNA damage generated by laser micro-irradiation.

Stoynov/ IMB-BAS

The proteins from different pathways must be spatially and temporally coordinated in order to efficiently repair complex DNA damages. How this is achieved by the cell, is still poorly understood, due to the complexity and rapid dynamics of the process.

This question is particularly important since many anticancer drugs either damage DNA or target DNA repair proteins. A systematic study of the impact of such drugs on the overall coordination of the repair process could deliver new insights into their mechanisms of action, prompt new applications or suggest possible side effects.

An international team of researchers from the Institute of Molecular Biology at the Bulgarian Academy of Sciences (IMB-BAS), Sofia University, the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), the Biotechnology Center (BIOTEC) and the Medical Faculty, both at the TU Dresden, and the Department of Mathematics of University of Pennsylvania built a high resolution, quantitative model of the dynamics of arrival and departure of 70 key DNA repair proteins at sites of complex DNA damage.

The researchers present their findings in the current issue of Molecular Cell. Combining the proteins based on their times of arrival, highlighted unexpected temporal aspects of complex DNA damage repair. The researchers could show that the proteins, which synthesize new stretches of DNA as part of the repair process, arrive at different times:

The proteins, which synthesize DNA without errors (error-free) are recruited within thirty seconds, while proteins performing imprecise DNA synthesis (error-prone) are recruited a minute later. The mechanism responsible for the delay in the error-prone synthesis, which is uncovered in this study, provides an opportunity for a precise repair of complex DNA damages.

The study also reveals that treatment with BMN673 (Talazoparib), a promising anticancer drug, dramatically changes the timescale of recruitment of DNA repair proteins at sites of complex damage. Notably, BMN673 delays the arrival of the error-free DNA synthesis machinery, which is loaded simultaneously with the error-prone repair proteins. The rearrangement in the order of the recruitment or removal of repair proteins as a result of BMN673 treatment, could affect the outcome of DNA repair and have a significant role for the anticancer activity of the drug.

The lead investigator Stoyno Stoynov from the IMB-BAS and former visiting scientist at the MPI-CBG and Alexander von Humboldt fellow at TU Dresden, concludes: ”This study generated a comprehensive kinetics-based resource which proved to be a powerful tool for investigating the interplay and coordination between DNA repair pathways. Even more importantly, it can serve as a platform for systematic evaluation of the effects of anticancer drugs targeting the DNA repair process.”

Aleksandrov, Radoslav et al. Molecular Cell, Volume 69 , Issue 6 , 1046 - 1061.e5
https://doi.org/10.1016/j.molcel.2018.02.016

About the MPI-CBG
The Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) is one of 84 institutes of the Max Planck Society, an independent, non-profit organization in Germany. 500 curiosity-driven scientists from over 50 countries ask: How do cells form tissues? The basic research programs of the MPI-CBG span multiple scales of magnitude, from molecular assemblies to organelles, cells, tissues, organs, and organisms.

About the IMB-BAS
The Institute of Molecular Biology is one of 42 institutes of the Bulgarian Academy of Sciences. IMB-BAS is the leading Bulgarian research institution in the area of molecular and cellular biology and biochemistry.

About the BIOTEC
The Biotechnology Center (BIOTEC) was founded in 2000 as a central scientific unit of the TU Dresden with the goal of combining modern approaches in molecular and cell biology with the traditionally strong engineering in Dresden. Since 2016 the BIOTEC is part of the central scientific unit “Center for Molecular and Cellular Bioengineering” (CMCB) of the TU Dresden.
The BIOTEC focuses on cell biology, biological physics, and bioinformatics.

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:
https://www.mpi-cbg.de/de/home/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>