Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing memories being made

02.09.2019

Researchers at Technische Universität Kaiserslautern have developed a new tool that can identify and control memory neurons in fruit flies.

Researchers at Technische Universität Kaiserslautern have developed a novel tool for tracking and manipulating long-term memories as they are stored in the brains of fruit flies.


The researchers (left to right): Vanessa Bräuler, Benjamin Escribano, Dominique Siegenthaler and Prof. Dr. Jan Pielage

Credit: Koziel/TUK

The tool, reported recently in the journal PLOS Biology, will help investigate how memory works at the molecular level. Insights gained from the simpler fruit fly brain can later guide studies of human memory.

Sorting out the specific mechanisms that lead to long-term memory formation in the fly brain is a challenge. The subset of neurons thought to be responsible for long-term memory have the same DNA as other neurons, making it difficult to design a biomarker that only identifies the neurons encoding a specific memory.

To overcome this problem, Dominique Siegenthaler, Benjamin Escribano and Vanessa Bräuler in the group of Professor Jan Pielage of TUK’s Division of Neurobiology and Zoology developed a genetic tag that responds to memory formation.

The tag is called CRE-activity dependent memory engram label, or CAMEL, for short. It utilizes the DNA-binding site of the CRE binding protein (CREB2), which is essential for the formation of long-term memories. The tag lights up when neurons have an active CREB protein binding to DNA, highlighting only the neurons in the process of forming a memory.

“For the first time, we can specifically control the neurons forming long-term memories in Drosophila,” Pielage said.

As if seeing memory formation in action was not exciting enough, the tag does much more. The researchers can also use it to inhibit or activate the neurons’ activities.

“Now we have genetic access to get after the cellular and molecular changes occurring during long term memory formation,” Pielage said.

For example, the team used their tag to inhibit signaling from the long-term memory neurons in fruit flies. They trained the flies to associate an odor with an electric shock. The flies were still able to learn and recall memory in the first three hours after training, indicating that short-term memory formation was not affected by silencing these neurons.

However, the flies were unable to recall the memory for the next four days, the time period when the CREB protein makes and maintains long-term memory. Interestingly, seven days after training, when CREB and thus the tag was no longer active, the flies again avoided the odor. This demonstrated that silencing CAMEL neurons specifically disrupted long-term memory recall but not production or storage of the memory.

To see if memories could be turned on artificially, the group tried a different experiment. They trained flies to associate an odor with a shock and then used their tag to express a channel that activates neurons when exposed to red light. When giving the flies the choice to move either in areas with or without red light, more flies chose to move to dark areas. This indicated that red light activated the neurons containing the “bad” memory about the odor and electric shock.

“The flies essentially avoided recalling this bad memory,” Pielage said.

Taken together, these experiments indicate that this small subset of tagged neurons is sufficient and required to make long-term memories, Pielage explained. The team next plans to create artificial memories in the flies, in order to systematically investigate the cellular changes that happen when creating and recalling memories.

“We still don’t know what happens in the neurons to store long-term memories or how we can recall memories,” Pielage said.

The study „Selective suppression and recall of long-term memories in Drosophila“ is published in PLOS Biology.
DOI: doi.org/10.1371/journal.pbio.3000400

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jan Pielage
Abteilung Zoologie-Neurobiologie
Tel: 0631 205-2426
E-Mail: pielage(at)bio.uni-kl.de

Originalpublikation:

The study „Selective suppression and recall of long-term memories in Drosophila“ is published in PLOS Biology.
DOI: doi.org/10.1371/journal.pbio.3000400

Melanie Löw | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

Further reports about: Biology DNA Drosophila electric shock fly brain fruit flies long-term memory neurons

More articles from Life Sciences:

nachricht New tool improves beekeepers' overwintering odds and bottom line
19.09.2019 | US Department of Agriculture - Agricultural Research Service

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

UMD-led study captures six galaxies undergoing sudden, dramatic transitions

19.09.2019 | Physics and Astronomy

Study points to new drug target in fight against cancer

19.09.2019 | Health and Medicine

New tool improves beekeepers' overwintering odds and bottom line

19.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>