Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists develop brand new class of small molecules through innovative chemistry

21.11.2011
Inspired by natural products, scientists on the Florida campus of the Scripps Research Institute have created a new class of small molecules with the potential to serve as a rich foundation for drug discovery.

Combining the power of synthetic chemistry with some advanced screening technologies, the new approach could eventually expand by millions the number of provocative synthetic compounds available to explore as potential drug candidates. This approach overcomes substantial molecular limitations associated with state-of-the-art approaches in small molecule synthesis and screening, which often serve as the foundation of current drug discovery efforts.

The study, led by Scripps Research Associate Professor Glenn Micalizio, was published Nov. 20, 2011, in an advanced online edition of the journal Nature Chemistry.

To frame the significance of this advance, Micalizio explains that high-throughput screening is an important component of modern drug discovery. In high-throughput screening, diverse collections of molecules are evaluated en masse for potential function in a biological area of interest. In this process, success is critically dependent on the composition of the molecular collections under evaluation. Modern screening centers maintain a relatively static collection of molecules, the majority of which are commercially available materials that have structures unrelated to natural products -- molecules that are appreciated as validated leads for drug development.

"This divergence in structure between natural products and commercially available synthetics lies at the heart of our inquiry," said Micalizio. "Why should we limit discovery of therapeutic leads to compound collections that are influenced by concerns relating to commercial availability and compatibility with an artificial set of constraints associated with the structure of modern screening centers?"

To expand the compounds available for investigation, the scientists embraced an approach to structural diversity that mimics nature's engine for the discovery of molecules with biological function. This process, termed "oligomerization," is a modular means of assembling structures (akin to the way that letters are used in a sequence to provide words with meaning) where a small collection of monomeric units can deliver a vast collection of oligomeric products of varying length, structure, and function (like the diversity of words presented in a dictionary).

Coupling this technique with a synthetic design aimed at generating molecules that boast molecular features inspired by the structures of bioactive natural products (specifically, polyketide-derived natural products, which include erythromycin, FK-506, and epothilone), the scientists established a new chemical platform for the discovery of potential therapeutics.

Micalizio points out: "The importance of oligomerization to drive discovery is well appreciated in chemistry and biology, yet a means to realize this process as an entry to small molecule natural product-inspired structures has remained elusive. The crux of the problem is related to challenges associated with the control of shape for each member of a complex oligomer collection -- the central molecular feature that defines biological function."

"It is the stability associated with the shape of these new compounds that lies at the heart of the practical advance," he continued. "The unique features of this science now make possible the ability to synthesize large collections of diverse natural product-inspired structures that have predictable and stable three-dimensional shapes."

Micalizio said that the science described represents a first step toward revolutionizing discovery at the interface of chemistry, biology, and medicine by embracing nature's strategy for molecular discovery. Coupling this type of advance with modern screening technology that can handle the evaluation of large compound collections at low cost (such as work by Scripps Florida Professor Thomas Kodadek, a co-author of the new study), can dramatically enhance the future of pharmaceutically relevant science.

The potential of this vision was highlighted in the new study, in which a 160,000-member compound collection was employed to discover the first non-covalent small molecule ligand to the DNA binding domain of p53 -- an important transcription factor that regulates a variety of genes involved in cell cycle control and cell death.

The first author of the study, "A Biomimetic Polyketide-Inspired Approach to Small-Molecule Ligand Discovery," is Claudio Aquino of Scripps Research. In addition to Micalizio and Kodadek, other authors include Mohosin Sarkar, Michael J. Chalmers, and Kimberly Mendes.

The study was supported by the Fidelity Biosciences Research Initiative, The State of Florida (The Florida Funding Corporation), and the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see http://www.scripps.edu.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>