Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover 3 new gene faults which could increase melanoma risk by 30 percent

11.10.2011
An international team of researchers has discovered the first DNA faults linked to melanoma - the deadliest skin cancer - that are not related to hair, skin or eye colour.

Cancer Research UK scientists at the University of Leeds, together with a team from the GenoMEL consortium*, scanned the genes in blood samples from almost 3000 Europeans with melanoma, and compared these with samples taken from the general population. Their findings are published in Nature Genetics today.**

Known risk factors for melanoma include fair skin, blue or green eyes, blond or red hair, a high number of moles, people who burn easily and those who have a family history.

Previous research by these and other scientists identified five pigmentation genes and three 'mole formation' genes, linked to melanoma risk. But the scientists have now discovered three new risk genes ¬– ¬not associated with pigmentation or moles***.

Four per cent of the UK population****, around 2.3m people, will carry two copies of all three gene faults (one copy inherited from each parent). The average risk of developing melanoma is about one in 60. This goes up to one in 46 if a person has both copies of all three gene faults.

Lead author, Professor Tim Bishop, based in the Cancer Research UK centre at the University of Leeds, said: "We know that overexposure to UV increases the risk of developing melanoma – but this evidence shows that there are new additional genetic faults which can push up the risk further.

"It is fascinating to discover these new melanoma risk factors – and we expect that the results of similar studies underway will reveal even more."

Dr Lesley Walker, Cancer Research UK's director of cancer information, said: "These intriguing results provide deeper understanding of the causes of melanoma and provide a potential new approach to identify people most at risk of developing melanoma and other cancers."

One DNA fault was found in the region of a gene called MX2 linked to narcolepsy – a disease thought to be triggered by the immune system which causes people to fall asleep spontaneously.

Another fault was found in a gene called ATM involved in DNA repair – preventing cancer-causing mistakes being passed onto daughter cells.

The third gene fault was found in the CASP8 gene, which plays a role in controlling cell spread by triggering automatic cell death.

There are around 11,770 new cases of malignant melanoma diagnosed each year in the UK and these are mainly caused by overexposure to UV light. Almost one third of all cases of malignant melanoma occur in people under 55. Over the last twenty-five years, rates of malignant melanoma in Britain have risen faster than any of the most common cancers.

Dr Lesley Walker added: "Cancer Research UK has invested heavily in research to identify tiny DNA changes to paint an overall picture of which regions of DNA could be linked to cancer – and we hope that research like this will reveal further genetic secrets to help us diagnose and treat the disease.

"The best way to reduce the risk of skin cancer, is to protect yourself from strong sun by covering up with clothing, spending some time in the shade, and applying at least SPF 15 sunscreen with four or more stars generously and regularly."

For more information:

Contact: Paula Gould, University of Leeds Communications & Press Office: Tel +44 (0) 113 343 8059, email p.a.gould@leeds.ac.uk

Notes to editors:

*GenoMEL consortium brings together teams from around the world who are working on the genetics of melanoma and identifying who is prone to developing melanoma. www.genomel.org

**Genome-wide association study identifies three new melanoma susceptibility loci. Nature Genetics. Barrett et al. [doi:10.1038/10.1038/ng.959].

***The new discoveries brings the total to 11 known genetic variations linked to increased melanoma risk and could potentially help identify people at greater risk of developing the disease in the future.

****The estimated resident population in the UK was 62,262,000 in mid-2010 according to figures from the Office for National Statistics of whom 91 per cent have white skin; melanoma is very rare in persons with other than white skin.

About the Leeds Cancer Research UK Centre

The Leeds Cancer Research UK Centre represents a formal partnership between the University of Leeds, Leeds Teaching Hospitals NHS Trust and Cancer Research UK which aims to harness the scientific power of Leeds-based cancer researchers in order to deliver improvements in cancer therapy at local, national and international level.

About the University of Leeds

One of the UK's largest medical, health and bioscience research bases, the University of Leeds delivers world leading research in medical engineering, cancer, cardiovascular studies, epidemiology, molecular genetics, musculoskeletal medicine, dentistry, psychology and applied health. Treatments and initiatives developed in Leeds are transforming the lives of people worldwide with conditions such as diabetes, HIV, tuberculosis and malaria. www.leeds.ac.uk

About Cancer Research UK

Cancer Research UK is the world's leading cancer charity dedicated to saving lives through research

The charity's groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.
Cancer Research UK has been at the heart of the progress that has already seen survival rates double in the last forty years.
Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.

Together with its partners and supporters, Cancer Research UK's vision is to beat cancer.

For further information about Cancer Research UK's work or to find out how to support the charity, please call +44 (0)20 7121 6699 or visit www.cancerresearchuk.org

Paula Gould | EurekAlert!
Further information:
http://www.leeds.ac.uk
http://www.cancerresearchuk.org
http://www.genomel.org

More articles from Life Sciences:

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht A microscopic topographic map of cellular function
13.06.2019 | University of Missouri-Columbia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>