Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salamanders chew with their palate

22.03.2019

Zoology research team from the Universities of Jena (Germany) and Massachusetts (USA) discovers potentially primeval chewing behaviour in salamandrids

The Italian Crested Newt – ‘Triturus carnifex’ – eats anything and everything it can overpower. Earthworms, mosquito larvae and water fleas are on its menu, but also snails, small fish and even its own offspring. A research team led by Dr Egon Heiss of Friedrich Schiller University in Jena (Germany) has studied the newt’s chewing behaviour and has made an astounding discovery.


When the Italian Crested Newt (Triturus carnifex) eats the grub, it chews it with its palatal teeth.

(Image: Jan-Peter Kasper/FSU)


Dr Egon Heiss from Jena University with an Italian Crested Newt (Triturus carnifex), whose chewing behaviour was examined.

(Image: Jan-Peter Kasper/FSU)

‘Triturus carnifex’ is an amphibian of the order Caudata and is a true salamander. “According to the textbooks, amphibians swallow their prey whole, but we have been able to refute this,” says Heiss.

Together with doctoral student Daniel Schwarz and Dr Nicolai Konow of the University of Massachusetts, Heiss has succeeded in proving that the crested newts do actually chew their prey, but in a way that is different from that of most other land-based vertebrates. The researchers have now presented their findings in the specialist publication ‘Journal of Experimental Biology’ (doi:10.1242/jeb.189886).

Palatal teeth kill prey

“This newt uses what are called its palatal teeth to kill its prey and also to break it up,” explains Heiss. This means that the jaw teeth are mainly used to catch or hold the prey. With the help of the tongue, the prey is then rubbed rhythmically against the palate. The palate is equipped with very sharp teeth, around 0.5 to one millimetre long, which are constantly replaced by new teeth. These teeth can, for example, tear open the extremely tough cuticula of fly maggots.

“This kills the prey and, at the same time, helps the digestive secretions to take effect,” says Heiss. For the newt, this is also a form of life insurance: some insect larvae have such a strong bite that they would be able to bore through the predator’s body. The first impetus for the surprising research result came on a research visit to Antwerp (Belgium), when Nicolai Konow and Egon Heiss observed a newt feeding.

The biologists were intrigued by the amphibian’s head, jaw and tongue movements after it had seized its prey. “The newt actually appeared to be chewing,” says Heiss. The researchers were able to obtain a clear idea of what was happening with the help of the X-ray video unit at the Institute of Zoology and Evolutionary Research of the University of Jena.

Salamanders chew like primeval land-based vertebrates

The newt’s chewing behaviour prompts the question of how it can be explained in the context of evolution. “We can assume that real palatal teeth were present in early land vertebrates, and we suspect that the ‘tongue against palate’ chewing mechanism, as seen in newts, is something that goes back to the early days of land-based vertebrates,” says Heiss. Very similar chewing mechanisms can indeed be found in ancient mammals such as the echidna and the duckbilled platypus, but also in the manatee. Although in these animals the palatal teeth have been replaced by rough keratin structures, the creatures still rub their food against the palate.

The tongue originated when vertebrates came onto land

From the point of view of evolution, the move from water to land brought about change in animals’ chewing apparatus. A key role is played by the tongue, which only developed after vertebrates left the water. It is crucial for enabling chewing, as it moves food to the right place in the mouth. “With fish, the water current helps to do this,” explains Heiss. A similar change occurs in amphibian larvae; during metamorphosis, the gills of amphibians transform into a tongue when the larvae leave the water.

The findings now presented are the first results from the research project ‘Form, Function and Evolution of Food Manipulation in Urodela’, which is funded by the German Research Foundation (DFG) and was launched at the beginning of 2017. The project runs until the end of 2019 and maybe during that time, ‘Triturus carnifex’ will be persuaded to reveal more secrets.

Wissenschaftliche Ansprechpartner:

Dr Egon Heiss
Institute of Zoology and Evolutionary Research of Friedrich Schiller University, Jena
Erbertstraße 1, 07743 Jena
Germany
Phone: +49 (0)3641 / 949183
E-mail: egon.heiss[at]uni-jena.de

Originalpublikation:

Heiss, E., Schwarz, D., and Konow, N. (2019). Chewing or not? Intraoral food processing in a salamandrid newt. J. Exp. Biol. 222, doi: 10.1242/jeb.189886, http://jeb.biologists.org/content/222/6/jeb189886

Stephan Laudien | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-jena.de/

Further reports about: Salamander Zoology amphibian mosquito larvae palate teeth vertebrates

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>