Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover why measles spreads so quickly

07.11.2011
Finding may also help fight cancer

Measles virus is perhaps the most contagious virus in the world, affecting 10 million children worldwide each year and accounting for 120,000 deaths. An article published in the Nov. 2, 2011 issue of Nature explains why this virus spreads so rapidly.

The discovery by Roberto Cattaneo, Ph.D., at Mayo Clinic in Rochester, MN, in collaboration with Veronika von Messling, DVM, at the Centre INRS–Institut Armand-Frappier and research teams at several other universities opens up promising new avenues in cancer treatment.

Measles virus spreads from host to host primarily by respiratory secretions. This mode of transmission explains why the virus spreads so quickly and how it resists worldwide vaccination programs to eradicate it.

The study in Nature shows for the first time how the measles virus "exits" its host via nectin-4, which is found in the trachea. While viruses generally use cellular receptors to trigger and spread infection in the body, measles virus uses one host protein to enter the host and another protein expressed at a strategic site to get out.

Nectin-4 is a biomarker for certain types of cancer, such as breast, ovarian, and lung cancers. Clinical trials are currently under way using a modified measles virus. Because measles virus actively targets nectin-4, measles-based cancer therapy may be more successful in patients whose cancers express nectin-4. Such therapy could be less toxic than chemotherapy or radiation.

Research was conducted in Dr. Cattaneo's laboratory in collaboration with the Paul Ehrlich Institute in Langen, Germany, the University of Iowa in Iowa City, U.S.A., Centre INRS–Institut Armand-Frappier in Laval, Canada, Inserm UMR 891/CRCM/Institut Paoli-Calmettes/Université d'Aix-Marseille in Marseille, France, and Duke-NUS Graduate Medical School in Singapore.

Institut national de recherche scientifique (INRS) is a graduate and postgraduate research and training university. One of Canada's leading research universities in terms of grants per professor, INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. INRS research teams conduct fundamental research essential to the advancement of science in Quebec as well as internationally and play a critical role in developing concrete solutions to problems facing our society.

Gisèle Bolduc | EurekAlert!
Further information:
http://www.inrs.ca

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>