Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Graz University developed new model to explain the emergence of biological diversity

07.04.2017

The southern tip of Lake Tanganyika is the home of red, blue and yellow cichlids that belong to the genus "Tropheus". The yellow Tropheus have developed as a result of hybridisation between red and blue fish, as researchers at the University of Graz have demonstrated by population genetic analyses and re-breeding in the laboratory. But how has this new phenotype managed to prevail? Why did the yellow cichlids not just continue to mix with the blue and red ones? The researchers see the answer to this question in environmental fluctuations. They have now published their new "Shifting Barriers Model" in the scientific journal "Ecology Letters".

"It very rarely happens in nature that a new phenotype, that developed as a result of cross-breeding, continues to persist over many generations", says Univ.-Prof. Dr. Kristina Sefc from the Institute of Zoology at the University of Graz who is also the first author of this recent publication.


Yellow Tropheus of the population Ilangi, which has developed as a result of hybridisation between red and blue fish in Lake Tanganyika

www.pisces.at/Wolfgang Gessl

"A hybrid population with its own distinctive traits can only survive if there is no further hybridisation with the parent line."

It is possible, yet very rare, that this is achieved by mate choice, i.e. only specimens of the same phenotype are recognised as mating partners. More often, the new population differs from its predecessors in ecological terms and colonizes a new habitat, for example, because it prefers a more arid environment.

In addition, environmental changes that create natural barriers may also contribute to physical separation. The latter is described by the Graz scientists in their "Shifting Barriers Model" now published for the first time.

This model, which can be applied to all sorts of different organisms, is the result of research on the red, blue and yellow Tropheus populations in Lake Tanganyika. The investigated populations inhabit the rocky sections of the lake shore. The yellow ones can only be found along an approximately 30 kilometre long stretch limited at both ends by sandy sections, one of these being the estuary of the wide Lufubu River.

The fish are highly specialised in reference to their habitat. Sand, for example, is a physical barrier that prevents them from meeting their red and blue conspecifics populating other lake shore sections. Otherwise they would mate, as was indeed demonstrated in laboratory experiments.

But how did the hybridisation come about? "As a result of environmental fluctuations, the positions of barriers separating the different fish populations along the coastline have changed so that the red and blue species came into contact, while the resulting hybrids were immediately physically separated from the parent lineages", explains Sefc. Roughly 100 000 years ago, the water level was 400 metres lower, and the lake shore looked entirely different.

At that time, the Lufubu was not the barrier it is today. "The new phenotype probably appeared at that time", the researchers presume. This assumption is in line with the fact that several different populations have in turn formed among the yellow cichlids. This indicates that the hybridisation must have happened a very long time ago.

In their analyses, the zoologists were supported by their colleagues from the Institute of Chemistry at the University of Graz.

Publication:
Shifting barriers and phenotypic diversification by hybridization
Sefc, Kristina; Mattersdorfer, Karin; Ziegelbecker, Angelika; Neuhüttler, Nina; Steiner, Oliver; Goessler, Walter; Koblmüller, Stephan
Ecology Letters, DOI: 10.1111/ele.12766

Contact:
Univ.-Prof. Dr. Kristina Sefc
University of Graz
Institute of Zoology
Tel.: 0043 316/380-5601
E-mail: kristina.sefc@uni-graz.at

Weitere Informationen:

http://doi.wiley.com/10.1111/ele.12766 publication

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:
http://www.uni-graz.at

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>