Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent zebrafish help researchers track breast cancer

23.10.2007
What if doctors could peer through a patient’s skin and see a cancer tumor growing? They’d be able to study how tumor cells migrate: how they look, how they interact with the blood system to find nourishment to grow and spread through the body.

Scientists at the University of California, San Diego (UCSD) School of Medicine can’t look through human skin. But a small, tropical minnow fish common to aquariums has given UCSD researchers a window for viewing live, human cancer cells in action. Working with transparent zebrafish to study one of the most aggressive forms of cancer, inflammatory breast cancer, has led to their discovery of how two proteins interact in the metastasis of breast cancer. The study led by Richard Klemke, Ph.D., professor of pathology at UCSD School of Medicine and the UCSD Moores Cancer Center, will be published in the Proceedings of the National Academy of Science online edition the week of October 22-26.

“By watching human breast cancer cells in real time in the live transgenic zebrafish, we were able to determine that two proteins are required in order for breast tumor cells to complete the most critical step of metastasis – entering the blood vessels,” said Konstantin Stoletov, Ph.D., of the department of pathology at the UC-San Diego School of Medicine, first author of the paper.

The scientists discovered that two proteins work together to allow cancerous breast tumors to enter the blood vessels, thus promoting metastasis. The first is vascular endothelial growth factor (VEGF), a protein made by cancerous cells that stimulates new blood vessel formation, or angiogenesis. The second is a small protein called RhoC that is involved in cell movement or migration, and is overexpressed in highly metastatic forms of breast cancer.

The researchers found that neither VEGF nor RhoC alone interact with blood vessels to allow the cancerous tumor to enter the blood vessels, or intravasate. “But together, they promote rapid intravasation,” said Stoletov.

Inflammatory breast cancer (IBC) is the deadliest form of human breast cancer, with fewer than half of those diagnosed today expected to live five years. The UCSD team developed an immuno-suppressed zebrafish that expresses green fluorescent protein (commonly known as GFP) only in its blood vessels, allowing scientists to view the tumor-induced blood vessel formation, or angiogenesis. They injected the fish with IBC cells that were tagged in different colors, in order to study the very rapid tumor progression.

The parental cancer cells were tagged in blue, and the migrating cells that overexpressed RhoC in red. Over several weeks, the researchers were able to watch the cancer’s progression using high-resolution, multi-color confocal microscopy.

The scientists discovered that RhoC induces an amoeboid-like mode of invasion, in which the cancerous cells move by means of temporary projections or ‘false feet.’ They also found that secretion of VEGF was required in order for the cancer cells to penetrate and enter the blood vessel.

“In later stages of the cancerous tumor, the VEGF induces rapid formation of irregular, leaky blood vessels,” said Stoletov. “We discovered that intravasation requires the secretion of VEGF, which disrupts the blood vessel wall, creating small openings that allow the tumor cells to penetrate and enter.”

Finding a way to suppress VEGF, thus inhibiting the growth of “leaky” blood vessels, could stop the movement of cancer cells into the blood vessels and the tumor’s subsequent metastasis, according to Klemke.

The results provide novel insight into mechanisms of cancer-cell invasion and intravasation, showing how RhoC and VEGF cooperate to facilitate cell metastasis in living tissues. The transparency of the fish also allowed the researchers to image and analyze, in three dimensions, images of a potential anti-cancer compound that inhibits the VEGF compound. They found that this inhibitor prevents formation of the vascular openings, thus inhibiting intravasation.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Researchers RhoC UCSD VEGF blood vessel breast cancerous formation intravasation metastasis vessel

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>