Ocean CO2 concentration influences climate

The air contains greenhouse gases such as CO2, which are now known to be responsible for global warming because their concentration has risen continu-ously for a number of years. In contrast to the atmosphere, the concentration of CO2 in the oceans is sixty times higher.

In the global carbon cycle the sea ab-sorbs a proportion of the atmospheric CO2 but also releases CO2 into the at-mosphere again. About half of the anthropogenic emission of CO2 is absorbed naturally by the oceans. Thus it is all the more important to understand how the exchange of CO2 between the ocean and the atmosphere functions with regard to a world that is warming up. The newly available study shows that the ocean was able to store more CO2 during the ice age than it can today.

Practically static bodies of water

Together with North American colleagues, an ETH Zurich research team made measurements on sea bed sediments. These sediments originate from moun-tains lying at a depth of about three kilometres below the water surface of the sub-Arctic Pacific Ocean. At that point the water temperatures are close to freezing and the conditions are very stable, because there is practically no mix-ing between the deep bodies of water and the surface water. The circulation of the water is measured using the radio-carbon method, which is based on the radioactive decay of the carbon isotope 14C. Measurements showed that the deep Pacific water has not been at the surface for more than 2,000 years.

Tiny single-celled organisms betray the CO2 level

To find out how the situation has changed compared to the last ice age, the re-searchers studied mud from the sub-Arctic Pacific Ocean lying approximately one metre below the present sea bed and about 20,000 years old. Tiny single-celled organisms with limestone shells known as foraminifera were selected from this mud under a microscope and afterwards measured with mass spec-trometers. These foraminifers locked in the carbon isotope signature of the seawater of their day – like in a time capsule. The research team has now been able to measure the 14C content precisely. This enabled them to show that the water in the ocean depths exchanged less CO2 with the atmosphere than at present.

A sobering result

The team also looked for key indicators that provide some information about the chemical composition of the ice age water. They found unusually clear evidence that this water captured more CO2 from the atmosphere than the water at the present day. The latest research results show that the oceans are generally able to fix more CO2 when they are cold.

Oceans that warm up as a result of climate change release more CO2 into the atmosphere. This discovery has far-reaching consequences for the climate. The ocean warming caused by humans contributes to the formation of additional greenhouse gases, mainly CO2. Consequently the positive feedback with the atmosphere associated with the latter leads to an even greater acceleration in global warming.

Samuel Jaccard, Research Assistant at ETH Zurich and one of the two principal authors of the study thinks that: “With a system as complex as the climate, even if we cannot draw conclusions directly from the natural cold past that are appli-cable to the warm future modified by humans, our results show that anthropo-genic warming causes additional critical feedback on the CO2 balance.”

Original paper: Galbraith, E.D., Jaccard, S.L., Pedersen, T.F., Sigman, D.M., Haug, G.H., Cook, M., Southon, J.R., Francois, R. Carbon dioxide release from the North Pacific abyss during the last deglaciation, Nature, 449, 890-894.

Media Contact

Renata Cosby idw

Further information:

http://samuel.jaccard@erdw.ethz.ch

All news from this category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Optically Active Defects Improve Carbon Nanotubes

Heidelberg scientists achieve defect control with a new reaction pathway. The properties of carbon-based nanomaterials can be altered and engineered through the deliberate introduction of certain structural “imperfections” or defects….

Visualizing the motion of vortices in superfluid turbulence

Nobel laureate in physics Richard Feynman once described turbulence as “the most important unsolved problem of classical physics.” Understanding turbulence in classical fluids like water and air is difficult partly…

Toward a reliable oral treatment for sickle cell disease

For the millions of people worldwide who have sickle cell disease, there are only a few treatment options, which include risky bone marrow transplants, gene therapy or other treatments that…

Partners & Sponsors