Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a 40-year search, a hormone controlling iron metabolism in mammals is finally identified

04.04.2002


Iron is vital for cells, because it catalyzes key enzyme reactions; it is also crucial for respiration, fixing atmospheric oxygen to hemoglobin in red blood cells. Iron deficiency can lead to severe anemia, with inadequate tissue oxygenation. An excess of iron is also toxic, as it facilitates the generation of free radicals that can attack the liver, heart and pancreas. This is the case in hereditary hemochromatosis, a genetic disorder which, in 80% of cases, is linked to a point mutation in the Hfe-1 gene, leading to excessive iron uptake by the intestinal tract. Hereditary hemochromatosis is very frequent in western countries, affecting one in 300 people. The body has no physiological mechanism for eliminating iron, and the only effective treatment for patients with hereditary hemochromatosis is bleeding, in some cases several times a week. These patients, and their doctors, are eagerly awaiting a breakthrough in our understanding of the mechanisms regulating iron metabolism, that might have therapeutic implications.



Dietary iron enters the body via cells known as enterocytes, that line the intestinal folds. Humoral signals are known to modulate how much iron these cells take up, according to the body`s internal stores. Yet, despite intense research over the last four decades, no-one had previously been able to identify these signals.

It is by chance that Gaël Nicolas, Sophie Vaulont and their coworkers came across such a signal while working on knock-out mice developed in their laboratory. The mice lacked a transcription factor known as USF2 (upstream stimulatory factor 2), thought to be involved in glucose metabolism. To their surprise, the team found that the mice had disorders similar to those of patients with hereditary hemochromatosis, namely premature ageing of the pancreas and liver, which take on an abnormal brown color - a sign of iron accumulation. Further tests indeed showed that the animals had a form of hemochromatosis. Intrigued, the team created a subtractive RNA bank in order to determine whether any other genes were abnormally expressed in their model. This was effectively the case. One abnormally expressed gene was found to correspond to a recently identified sequence of 25 amino acids found in members of an antimicrobial peptide family called the defensins. The peptide in question - hepcidin - is produced by the liver and secreted into the bloodstream. Hepcidin has a degree of antimicrobial activity, but Axel Kahn, Sophie Vaulont and their colleagues at Bichat Hospital in Paris believe that it acts essentially as a true hormone, inhibiting iron uptake by intestinal cells; they also believe that when hepcidin dysfunctions the body has no way of limiting iron absorption into the bloodstream.


To test this hypothesis, the team first checked that iron levels were normal in a transgenic mouse model, produced in another laboratory, that lacks USF2 but has an intact hepcidin gene. Then they went on to create transgenic mice whose livers overproduced hepcidin, expecting them to develop anemia. In the event, almost all the new-born animals were smaller than normal, had very pale skin and no hair, were profoundly anemic, and died within hours of birth - unless they received an injection of iron. (Some animals producing less hepcidin were less severely anemic and survived without treatment.)

This discovery opens up exciting therapeutic and diagnostic perspectives in diseases due to abnormal iron homeostasis. Therefore, a patent application has been filed by INSERM and the inventors. One short-term possibility is a diagnostic test based on serum hepcidin measurement. In the longer term, the development of hepcidin agonists and antagonists may well transform the treatment of these frequent and potentially severe disorders.

Nathalie Christophe | alphagalileo

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>