Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hodgkin lymphoma: A unique example for tumor cell reprogramming

22.12.2005


Researchers at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch (Germany) and the Charité University Medicine Berlin (Campus Virchow and Campus Buch) have discovered a molecular mechanism which explains why the cells of Hodgkin lymphoma, a malignancy affecting the lymph nodes, can change their appearance and take on characteristics of other cell lineages. "This is a perfect example of the ability of the B cells, a specific type of human immune cells affected by Hodgkin lymphoma, to be able to modify their differentiation program", say Dr. Stephan Mathas and Dr. Martin Janz from Professor Bernd Dörken’s group at the MDC and the Charité. Their findings have now been published online in advance in Nature Immunology (doi:10.1038/ni1285, 2005)*. Their data also make it clear why it has been so difficult to find out which cells in the body are affected by the disease which was first described in the literature in 1832 by the English physician and pathologist Thomas Hodgkin. Not until 1994, 160 years after he had initially described the disease, scientists had found out that it originates in the B cells, specific white blood cells of the immune system. Now, the data of the Berlin research group also help to understand the process of normal and malignant B cell development.



The various white blood cells, as well as the red blood cells and the blood platelets, develop from blood stem cells in the bone marrow, orchestrated by different molecular switches called transcription factors. They tell the cells which direction "to go". Until now, it has been assumed that once human blood cells have developed into one direction they are no longer able to leave their path. However, experiments in mice have shown that mature B cells have the ability to do exactly this: reprogramming and developing into different cell lineages. Until now, it was unclear whether human blood cells can undergo similar processes.

Now, Dr. Mathas and Dr. Janz were able to show that in Hodgkin Reed Sternberg cells, which originate from B cells, the program which steers the differentiation of B cells is defect. One of the central regulators of B cell development, called E2A, is blocked by two antagonists, known as Id2 and ABF-1. Following inhibition of E2A, B cell characteristics are lost and genes for markers of other immune cells, such as macrophages and T cells, which are not characteristic for B cells, are upregulated. Thus, the B cells have changed their appearance. These findings shed light on the extraordinary appearance of Hodgkin Reed Sternberg lymphoma cells.


* Intrinsic inhibition of E2A by ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma

Stephan Mathas1,2*, Martin Janz1,2*, Franziska Hummel2, Michael Hummel3, Brigitte Wollert-Wulf2, Simone Lusatis2 , Ioannis Anagnosto-poulos3, Andreas Lietz2, Mikael Sigvardsson4, Franziska Jundt1,2, Korinna Jöhrens3, Kurt Bommert2, Harald Stein3 and Bernd Dörken1,2

1Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Str. 10, 13125 Berlin; 2Hematology, Oncology and Tumorimmunology, Charite, Medical University Berlin, Campus Virchow-Klinikum, Campus Berlin-Buch, Augustenburger Platz 1, 13353 Berlin; 3Institute for Pathology, Charite, Medical University Berlin, Campus Benjamin Franklin, 12200 Berlin; 4Department for Hematopoietic Stemcell Biology, Stemcell Center, Lund University, S221 84 Lund, Sweden

*These authors contributed equally to this work
Press and Public Affairs
Max Delbrück Center for Molecular Medicine(MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Str. 10
13125 Berlin
Phone: +49/30/9406-38 96
Fax.: +49/30/9406-38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>