Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough: structure of membrane protein described by Hebrew University, German researchers

05.08.2005


Illustration of the membrane protein NhaA. Area outlined by the white dots indicate the funnel of the protein extending into the cell membrane.


The structure of the membrane protein NhaA has been revealed by researchers at the Hebrew University of Jerusalem and the Max Planck Institute of Germany.

Membrane protein research is at the forefront of modern biological study, with great potential consequences for development of new medicinal treatments and genetic engineering of plants.

The research on NhaA has been carried out by Etana Padan, the Adelina and Massimo DellaPergola Professor of Life Sciences, with Dr. Rimon Avraham, both of the Silberman Institute of Life Sciences at the Hebrew University, and Prof. Hartmut Michel, Nobel prize winner for chemistry in 1988, of the Max Planck for biophysics in Frankfurt, Germany. Their work, described in a recent edition of the journal Nature, was supported by a grant from the German-Israel Binational Science Foundation;



Proteins such as NhaA are found in the membranes of every living cell, from bacteria and up to humans. Until now, the structure of fewer than 50 cell membrane proteins have been discovered, as opposed to 30,000 soluble proteins.

“The location of the proteins in the cell membranes presents tremendous difficulties in research,” said Prof. Padan. “Unlike the majority of those proteins which are soluble in water, the membrane proteins are soluble only in fats or in the presence of detergents.”

The cell membrane is the crossroads of busy, two-way “traffic” through which materials and impulses travel into and out of the cell. The fatty cell membrane is impenetrable to most of these materials and signals; and it is therefore the proteins within the membranes that are responsible for the communication between the cell and its environment. Indeed, more than 60 percent of the medicines in use today are directed at the cell membrane proteins. Since the cell membrane proteins are exposed, in part, to areas extending outside the cells, the medicines are able to reach them without entering the cell itself.

In Prof. Padan’s laboratory, the researchers succeeded in isolating the gene that encodes NhaA in bacteria and in producing a large quantity of the protein in its active state. This achievement paved the way for determining the structure of the protein, providing an essential insight into its mechanism of activity and regulation. NhaA protects the volume of the cell and its internal, normative state in terms of its salinity and acidity.

The deciphering of the NhaA protein’s structure was done utilizing three-dimensional crystals of the protein which diffract x-rays. The work of analyzing the diffraction was done using the powerful electron accelerators in Grenoble, France, and Zurich, Switzerland.

“In this way we were able to reveal the wonderful architecture of the membrane protein, which was unknown before,” said Prof. Padan. “In the center of the protein we found a wide funnel which extends into the cell. The funnel narrows and ends at the point at which it binds with the sodium or the hydrogen deep within the cell membrane. Near that point two chains of the protein unite into a unique structure.”

The researchers believe that this unique structure is the basis for the activity of the protein. The protein operates as a kind of pump, utilizing energy which it receives from processes taking place within the cell. The protein structure thus acts as a kind of molecular motor. This “motor” is connected to the area found at the mouth of the funnel that apparently conveys signals to “modulate” the motor according to the acidity within the cell. The result is that the protein’s activity is controlled in accordance with the needs of the cell in relation to its acidic and basic levels.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>