Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at UGA provide first look at protein expression in Chagas disease-causing parasites

15.07.2005


Nearly 20 million people worldwide are infected with a parasitic ailment called Chagas Disease, and nearly a third of those will develop severe heart trouble. Although options for treatment are poor and there are no vaccines, a new study by scientists at the University of Georgia of proteins in the parasite that causes the disease may offer hope.



The first-ever global survey of protein expression in the four lifecycle stages of Trypanosoma cruzi, the parasite that causes the disease, could help lead to vaccine discovery and new drug targets, according to Dr. Rick Tarleton, a cellular biologist in UGA’s Center for Tropical and Emerging Global Diseases (CTEGD) and lead researcher.

"This work provides a first view into some of the complex biology of this organism," said Tarleton. "It helps tell us which of its genes are expressed as proteins and in what stages."


The research was published today in the journal Science. The research was conducted by Tarleton with colleagues James Atwood and Brent Weatherly, also of the CTEGD; Dr. Ron Orlando and his laboratory at UGA’s Complex Carbohydrate Research Center; and with help from Dr. Fred Opperdoes of Catholic University in Brussels.

The paper is part of a large section on parasite genomes in the current issue of Science. Tarleton is co-author of the paper on the T. cruzi genome.

Chagas Disease is a pervasive problem in tropical climates. The disorder is named after Brazilian doctor Carlos Chagas who first discovered the parasite that causes the disease in 1910. While T. cruzi is also found in many other animals, including cats, dogs and rodents, it is unlikely that the parasite in those animals can be transmitted directly to humans. The disease in people is transmitted by insects that bite humans then defecate, passing the parasite into the blood stream when victims scratch the wound site or touch it and then touch a vulnerable mucus membrane site such as the eyes.

Despite the widespread nature of the disease, available treatments are unreliable, and no vaccine against the parasite has ever been developed. That’s why Tarleton and his colleagues studied the T. cruzi "proteome"--proteins it expresses. The issue is complex, since the parasite has four lifecycle stages.

The research confirmed some of the predictions of gene expression in the just-completed gene map of T. cruzi. It also showed, for the first time, which genes express proteins in the four development stages.

"This provides a wealth of interesting biology we didn’t know before, but it also gives us ways to put the information to use," said Tarleton. "What we found on stage specificity and abundance of protein expression provides new criteria for selecting vaccine targets. Additional information on the expression of large gene families may influence decisions on their utility as vaccine candidates."

While the proteome analysis, in conjunction with the genome, provides new avenues for drug and vaccine discovery, limitations remain. Unlike the genome, which provides a comprehensive view of the entire organism, the proteomes are partial and preliminary.

"Unfortunately, current technology doesn’t allow for the easy detection of very low abundance proteins," said Tarleton. "Also, it can look only at relative expression of proteins in different stages."

Still, understanding how proteins work in T. cruzi is an important first step toward helping end the misery that plagues so many people. Researchers estimate than around 90 million people are at risk for Chagas Disease. In endemic areas, it is associated with other parasitic diseases, tuberculosis, HIV and malnutrition as a typical "social disease" among the rural poor.

Blood transfusions tainted with T. cruzi are also a serious problem in South America, and costs associated with control and treatment run into the billions of dollars each year. While the disease is rare in the United States, conditions in the far southeastern and southwestern parts of the country make it as least potentially susceptible to the disorder.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>