Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Cause of "Early Bird" Sleep Disorder

31.03.2005


A few rare people who consistently nod off early, then wake up wide-eyed much before dawn, can blame a newly-found mutant gene for their sleep troubles, Howard Hughes Medical Institute researchers announced today.



This odd “time-shift” trait — called familial advanced sleep phase syndrome (FASPS) — was studied in one affected family by neurologist Louis J. Ptacek, a Howard Hughes Medical Institute researcher, and Ying-Hui Fu, at the University of California, San Francisco. Their report appears in the March 31, 2005, issue of the journal Nature.

The sleep-shifting mutation they found is in “a gene that was not previously shown in mammals to be a circadian rhythm gene,” Ptacek explained. It’s not yet clear how the mutant gene works to shift people’s sleep time, their circadian rhythm, he added. But follow-on experiments in fruit flies and mice yielded results that are intriguing.


When the mutant gene was inserted into the flies, for example, it did the opposite of what was seen in the human family: it lengthened circadian rhythm. Yet in genetically engineered mice, the same gene change made the mice early risers — mimicking what was seen in humans with FASPS.

So, studies of all three organisms — flies, mice and humans — “will help us understand the similarities and differences” in how the gene works in different settings, in different genetic backgrounds, he said. Experiments can be done in mice and flies, with results applying to humans, while the studies of humans can inform what’s being seen in the flies and mice.

In addition, “these results show that the gene is a central component of the mammalian circadian clock, and suggest that mammalian and fly clocks may have different regulatory mechanisms, despite the highly conserved nature of their individual components," the research team wrote in Nature. Such studies may help unravel some of the fundamental mysteries of how circadian rhythms are established and maintained in creatures that have evolved along very different paths.

As for the affected individuals, Ptacek said most are able to live normal lives, and some are proud of being able to arise before dawn and get a lot done while everything is quiet. A few, however, are constantly bothered by living out of sync with everyone else’s daily schedule.

“Some of them would never come to a doctor” to find out what’s going on with their sleep pattern, Ptacek said, “because they aren’t troubled by it. Often, they have adjusted and accommodated their jobs to match their ability. But others are bothered by being out of phase with the rest of the world.”

He said the FASPS subjects don’t seem to sleep any more or less than other people; they just sleep at different times. And there is apparently no connection to the better-known problem called narcolepsy.

Ptacek said it was also found — in the family’s six affected individuals — that “they all have asthma, and they all have migraine headaches, with aura. Now, that could be purely coincidental, but a more important possibility is that these are part of the same syndrome.” So far, however, “we haven’t even looked at that yet.”

He estimated that a very small number (about .3 percent) of the human population seems to have this “circadian clock” shift. And in earlier research, Ptacek and his colleagues had discovered an entirely different gene that causes a similar clock-shift. Both arise because of so-called point mutations in the genes. This means that altering a single base-pair in the gene’s long DNA chain is enough to change a person’s sleep behavior. Evidence from tissue culture experiments with the second gene suggests the change causes a protein — an enzyme called a kinase that is made by the gene - to be less active than normal.

The lead author of the paper in Nature is Ying Xu, a member of the team in San Francisco. Other team members are at the University of Vermont and the University of Utah.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>