Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplanted bone marrow cells reduce liver fibrosis in mice

08.12.2004


Transplanted bone marrow cells can reduce carbon tetrachloride-induced liver fibrosis in mice and significantly improve their survival rates, according to a new study published in the December 2004 issue of Hepatology, the official journal of the American Association for the Study of Liver Diseases (AASLD). Published by John Wiley & Sons, Inc., Hepatology is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/hepatology.



Previous reports have shown that bone marrow cells can differentiate into a number of other types of cells, including liver cells, which could help patients with liver cirrhosis and chronic liver failure. To study this possibility, researchers, led by Isao Sakaida, M.D. of Japan’s Yamaguchi University, studied the effect of transplanted bone marrow cells on mice with liver fibrosis.

The researchers first caused liver fibrosis in the mice by injecting them with carbon tetrachloride (CCI4) twice a week for four weeks. They then divided the mice into two groups and treated one with green fluorescent protein-positive blood marrow cells. They treated the control group with saline. All mice continued to be treated with carbon tetrachloride. After 1, 2, 3 or 4 weeks, the researchers assessed the extent of liver fibrosis in the mice. To measure survival rates, 15 mice from the experimental group and 15 from the control group were then treated with carbon tetrachloride for an additional 25 weeks.


After five weeks of treatment with carbon tetrachloride, the researchers detected liver fibrosis in the mice. Just one week after blood marrow cell transplantation, they found evidence of those cells in the liver, with more appearing as the weeks passed. "Surprisingly," the researchers report, "four weeks later, the blood marrow cell-transplanted liver clearly showed reduction of liver fibrosis compared with the liver treated with CCI4 alone at 8 weeks."

Furthermore, the mice that received blood marrow cell transplants along with continuing carbon tetrachloride treatments showed a gradually increased serum albumin level and had significantly improved survival rates compared with mice that only received carbon tetrachloride treatments.

The transplanted blood marrow cells degraded collagen fibers and reduced liver fibrosis, exhibiting strong expression of matrix metalloproteinases (MMPs), especially MMP-9. "The reason for the strong expression of MMP-9 is still unknown," report the authors, but report that it was somehow related to the migration of the blood marrow cells to the inflammatory liver and to those cells’ degradation of the liver fibrosis.

"The present study clearly indicates that this subpopulation of blood marrow cells is responsible for the resolution of liver fibrosis induced by CCI4 treatment," the authors conclude, and "introduces a new concept for the treatment of liver fibrosis."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/hepatology
http://www.wiley.com

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>