Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt-Water Minnow Research Helps Explain Human Cardiology Puzzle

03.12.2004


Doctors and their patients have puzzled over why certain cholesterol-lowering drugs work better in some people than others. In research results published in the December issue of the journal Nature Genetics, the common minnow helps provide an answer.



Researchers Douglas Crawford and Jennifer Roach of the University of Miami’s Rosenstiel School of Marine and Atmospheric Science (RSMAS) and Marjorie Oleksiak of North Carolina State University studied the genetic make-up of the fish and found that normal differences in how their heart muscles process fats and sugars contain clues to this mystery. The National Science Foundation (NSF)’s biocomplexity in the environment program, and biological oceanography program, funded the work.

"These scientists found a genetic set of keys that begins to unlock the mystery of why certain people can eat fatty foods and not suffer from heart disease, and why some medical treatments work more effectively in some people than in others," said Philip Taylor, director of NSF’s biological oceanography program. "This far-reaching research is a result of NSF’s investment in the use of genetics as a way of understanding how organisms adapt to their environments."


Some hearts, it turns out, use glucose (sugar) better than others. Some use fatty acids (fats) better. In general, if an individual is good at using or metabolizing one source, he or she is not good at using the other.

Using technology known as gene microarrays, the scientists were able to measure how the products of genes make proteins that in turn convert food sources into energy. They found a large variation from individual to individual in the number of genes associated with functions related to sugar and fat metabolism. Those differences explain much of the variation in cardiac metabolism of both sugar and fat, the researchers believe.

Surprisingly, the genes that matter most are not the same in each individual: in some, increases in certain genes affect the use of fats, while in others, they affect the use of sugars. "This is an important first step in understanding why some of us can eat fatty foods and not suffer from cardiac disease," said Crawford, "and why some drugs or medical treatments work on some individuals but not on others."

Ultimately, the scientists think, their work could point the way toward identifying the number and type of certain genes a person has. With this information, doctors may be able to prescribe the most effective medication within a certain class of drugs to treat high cholesterol or blood sugar, and have a clearer understanding of an individual’s propensity for heart disease.

The research was also funded by the National Institutes of Health’s National Heart, Lung and Blood Institute.

Cheryl Dybas | NSF News
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>