Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin and Stanford researchers find key clues to muscle regeneration

12.11.2004


Discovery may one day lead to new ways to treat degenerative diseases



Scientists at Stanford University and Joslin Diabetes Center are providing new insights into how muscle cells regenerate -- leading to powerful tools to help scientists better understand diseases such as muscular dystrophy. Skeletal muscle contains a complex array of cell types. Among its principal components are multi-nucleated muscle fibers and muscle satellite cells -- cells located in close association with muscle fibers and containing precursors capable of giving rise to new muscle fibers.

"Our studies show that only the satellite cells, located near muscle fibers, can give rise to new muscle cells. Contrary to previous studies, precursor cells from bone marrow or other blood-forming tissues did not change their destiny to become muscle cells," said Amy J. Wagers, Ph.D., Investigator in the Developmental and Stem Cell Biology Research Section at Joslin Diabetes Center and Assistant Professor of Pathology at Harvard Medical School, the principal investigator of a study published in the Nov. 12 edition of Cell. The research, which originated in the laboratory of Irving L. Weissman, M.D., at Stanford University, now continues at Joslin Diabetes Center in Boston. Over the past few years, several research groups have reported that stem cells found in the bone marrow could repair damaged muscle cells. This had raised hopes that the well-characterized blood-forming stem cells could be used therapeutically to treat muscular diseases. Dr. Wagers’ work disputes these past results, showing that bone marrow stem cells do move to the muscle but don’t regularly participate in repairing muscle damage.


In the first part of the Dr. Wagers’ latest study, the researchers isolated muscle satellite cells from mice and marked them with a substance that glows in fluorescent light. They also generated adult bone-marrow cells and blood-forming stem cells that carried the fluorescent markers. They then examined the capacity of these three different cell types to generate new muscle cells in cell culture or in mice that had injured muscle tissue.

"The results show that adult stem cells that are committed to the blood lineage do not normally differentiate into muscle cells," said Dr. Wagers. "The only cells that had full potential to generate muscle cells were derived from muscle, not from transplanted bone-marrow or blood-forming stem cells."

Armed with this information, the researchers looked for the exact cells involved. To do this, they developed a new method that uses a set of unique cell-surface markers. This method allowed them to isolate and distinguish a subset of muscle precursor cells that give rise, at high frequency, to new muscle cells.

They found a precise cell type -- the precursor to new muscle growth. In fact, a single cell from this subset could alone generate a sizable colony of new muscle cells. "Identifying this precursor of new muscle cells gives us new research tools for future studies, including those in humans," said Dr. Wagers. "As we learn more about the genes expressed by these cells and the pathways involved in regulating them, we can learn more about muscle cell injury and regeneration. This may give us a better understanding of what goes wrong in degenerative diseases such as muscular dystrophy, leading possibly to new ways to treat such diseases."

The Research Team

This research initiative, which originated at Stanford University, is now underway at Joslin Diabetes Center in the laboratory of Dr. Wagers. The study’s first author was Richard I. Sherwood, currently a graduate student in the Department of Molecular and Cellular Biology at Harvard University. Other investigators included Julie L. Christensen, Ph.D., currently at Cellerant Therapeutics; Irina M. Conboy, Ph.D., an Assistant Professor in the Department of Bioengineering at University of California-Berkeley; Michael J. Conboy, Ph.D., a postdoctoral fellow at Stanford University; Thomas A. Rando, M.D., Ph.D., Associate Professor of Neurology and Neurological Sciences at Stanford; and Irving L. Weissman, M.D., Professor of Pathology and Developmental Biology at Stanford. Funding for this study was provided in part through grants from the National Institutes of Health, the Department of Veterans Affairs, and the Burroughs Wellcome Fund.

Marjorie Dwyer | EurekAlert!
Further information:
http://www.joslin.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>