Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified master gene key in baby’s first breath

28.09.2004


Findings could have implications for treating lung disease



Researchers at Cincinnati Children’s Hospital Medical Center have identified a master gene that controls the first breath a newborn infant takes. The findings could have implications for treating premature babies and children and adults with lung disease or lung injury. While other genes have been identified as having roles in lung development, this master gene, called Foxa2, controls key factors that allow the lungs of a fetus to develop fully and eventually breathe air. While Foxa2 was previously known to exist, its role in lung maturation and function at birth were not known.

When Foxa2 is missing in newborn mice, respiratory distress syndrome and in many cases, death, was almost certain to follow, said Jeffrey A. Whitsett, MD, chief of Neonatology, Perinatal and Pulmonary Biology at Cincinnati Children’s and senior author of the study that appears in the October 5 issue of the Proceedings of the National Academy of Sciences (PNAS). "It was surprising to us that a single gene was able to orchestrate so many other aspects of lung function we know are critical for survival at the time of birth. The discovery of this gene and understanding of how it works could lead to new treatments for premature infants and for children and adults who suffer from lung disease or injury," he said.


Because lungs do not fully mature until the last trimester of gestation, when an infant is born prematurely, the lungs are not fully developed and lack the necessary amount of surfactant needed to keep the lungs working properly. Surfactant is a natural chemical found in the lungs that prevents alveoli - the tiny airways in the lungs - from collapsing and in turn allows the lungs to open when the newborn starts to breath. The absence of surfactant causes respiratory distress syndrome within hours of birth. "We showed that Foxa2 regulates a group of genes that stabilize surfactant production, which is required for the transition from the womb to breathing air and to protect the lungs from disease, bacterial infection and other disease and injury," Dr. Whitsett said.

Foxa2 has an important role in the development of surfactant. It resides in the respiratory epithelial cells, which combines surfactant proteins and lipids (essential fat), which in turn produces surfactant.

Researchers bred mice with and without the Foxa2 gene. When the gene was deleted, the knockout mice developed all the signs and symptoms of respiratory distress syndrome on the first day of life and died within hours of birth. The few knockout mice that did survive, developed asthma-like symptoms and emphysema later in life. On the other hand, when Foxa2 was fully intact, the newborn mice survived normally.

Foxa2 is different from other genes because it is a master gene: it controls how other genes work. For example, in the knockout mice, genes expressed in surfactant proteins and genes involved in lipid metabolism, were directly influenced by the absence of Foxa2.

Researchers found that when the Foxa2 gene was deleted, the Foxa1 gene was expressed more strongly, perhaps in an effort to compensate for the absence of the parent gene, Dr. Whitsett said. Still, the Foxa1 was not strong enough to support the development of sustainable healthy lungs in the mice.

According to the March of Dimes, one in eight infants in the U.S. are born prematurely. Furthermore, approximately 24 percent of all infants born prematurely will die in the first month of life and in most cases, it is as a result of respiratory distress syndrome.

Steroids have become one of the most common courses of treatment for infants with underdeveloped lungs. Steroids work by stimulating lung development, but their use has been associated with side effects, such as cerebral palsy, asthma and bronchitis.

The identification of Foxa2’s role in lung development is expected to lead to new treatments for premature babies, children and adults with lung disease or lung injury.

Amy Reyes | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>