Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale scientists visualize details of how hepatitis C unwinds RNA

26.07.2004


Research led by Anna Marie Pyle, professor of molecular biophysics and biochemistry at Yale University reveals how a protein from Hepatitis C (HCV) unwinds RNA, potentially allowing it to be copied.



The work published in the journal Nature focuses on an enzyme, helicase NS3, that unwinds the RNA virus for replication inside cells. NS3 is one member of an extensive family of helicases and is used as a model for studying unwinding activities of motor proteins.

Their findings are particularly important because NS3 is a major drug target against HCV and understanding the helicase function will aid in the development of HCV inhibitors.


Pyle’s results contradict the idea that helicases move smoothly with the continuous action of a snow plow. Instead, NS3 moves with a discontinuous stepping motion that alternates rapid translocation with pausing. "We observe that the helicase proceeds through discreet spatial and kinetic microstates," Pyle said. "We actually track the speed and processivity of the helicase as it passes through each base pair of its substrate."

"While this report is the first of its kind, and has produced highly significant results, it is only the beginning of a new understanding in HCV enzymology," said Pyle. "In the future, our approaches will be used to understand the composition of the HCV replication complex and the interplay between its constituent proteins. Comparative studies will be done on other viruses and in other systems where helicase function is critical."

These novel features were revealed using a new type of combinatorial enzymology that allows the behavior of helicase enzymes to be directly compared on a sequence panel. This is the first time that the behavior of a nucleic acid remodeling protein has been monitored at this high resolution, as it acts upon or passes each subunit of its target, according to Pyle. Since the work was conducted on RNA, it helps to bring RNA helicases to the forefront of motor research.

"By visualizing one of the key steps in how hepatitis C makes copies of itself, Dr. Pyle unexpectedly discovered that the molecular motor that unzips the virus’ genetic material looks a lot like the motor that drives muscles," said Dr. Richard Ikeda, a chemist at the National Institute of General Medical Sciences, which funded the work. "This is a perfect example of how a basic investigation revealed surprise insights into the similarities among widely different organisms.’

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>