Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein-centric drug development and functional glycomics enrich biopharmaceuticals pipeline

29.04.2004


Technical Insights biotechnology industry impact service



Researchers are beginning to see the potential for breakthrough in healthcare through glycomics, which studies carbohydrates, proteins and their interactions. In fact, these carbohydrates are moving beyond their regular roles as sugar storage bins. Carbohydrate-binding proteins are becoming extremely useful in curing various illnesses.

"The rapid evolution of glycomics as a natural extension of proteomics provides a better understanding of glycoproteins, glycosylation process, and its role in the protein function," explains Frost & Sullivan Industry Analyst Giridhar Rao. "This in turn facilitates the development of novel biodrugs."


The rapid progress of glycomics in the biopharmaceutical industry is evident from the existence of approximately half a dozen drugs, in which manipulation of carbohydrates and proteins provides advanced drug properties. For example, Epogen – a glycotherapeutic drug – contains two additional carbohydrate groups that can extend circulatory half-life and magnify efficiencies.

Active research on glycosyltransferases to understand the role of carbohydrate interactions in a cancerous cell is also likely to provide further opportunities for application of glycomics. One such prospect lies in the development of protein serum-based cancer diagnostics.

In fact, glycoprotein therapeutics is the fastest growing segment in the biopharmaceuticals industry with an annual growth rate of 24 percent, which is expected to accelerate further. However, maintaining adequate manufacturing capacity is a critical challenge.

"With around 100 protein-based drugs that are in late-stages of human clinical trials, few are likely to hit the market in the coming years," says Rao. "Hence, raising the demand for production capacity at least by four times more than the existing capacity. This may be essential to maintain the demand-supply equilibrium."

This creates an urgent need for alternate manufacturing media such as transgenic plants and animals, besides the mammalian and microbial and fungal cell culture systems.

Fungal cell lines provide considerable time and cost benefits over mammalian cell lines. For instance, the latter proves to be a lengthy process and may alter the properties of the final therapeutic glycoprotein.

Conversely, fungal cell lines such as engineered yeast expression systems for production of humanly glycosylated protein provide for faster fermentation and a higher product yield.

Industrial bioprocessing also holds immense potential for biotechnology. The development of a sophisticated microbioreactor for bacterial cell culture could speed up the bioprocessing mechanism.

A 5- to 50-microliter microbioreactor provides significant advantages over traditional chemical processes, such as lower temperature, pressure, and almost neutral pH requirements. Also, mass production with lesser power consumption is viable since the raw materials are renewable living cells.

Nano-biotechnology proves to be another potential growth area, where the endless possibilities of ’doing big with small’ exist. This has sparked an explosion of research and has influenced the commercialization of many nano drug delivery technologies.

For instance, the uniquely small-sized carbon buckyballs and nanotubes are proving to be successful nano-carriers that are small enough to navigate within the body. Thereby, they could serve as effective carriers of active ingredients for cancer treatment. However, dealing with the toxicity of trace nanoparticles that could be left behind in the body, is a major concern.

Another promising technique is nano-sized dendrimers that escape the blood stream through vascular pores, and selectively target and treat tumor cells. Dendrimer-based drugs coupled with additional agents provide high-end tumor images and hence could revolutionize cancer treatment.

Julia Paulson | EurekAlert!
Further information:
http://www.frost.com
http://www.technicalinsights.frost.com

More articles from Life Sciences:

nachricht Residues in fingerprints hold clues to their age
23.01.2020 | American Chemical Society

nachricht Here, there and everywhere: Large and giant viruses abound globally
23.01.2020 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Residues in fingerprints hold clues to their age

23.01.2020 | Life Sciences

Here, there and everywhere: Large and giant viruses abound globally

23.01.2020 | Life Sciences

Preventing metastasis by stopping cancer cells from making fat

23.01.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>