Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein-centric drug development and functional glycomics enrich biopharmaceuticals pipeline

29.04.2004


Technical Insights biotechnology industry impact service



Researchers are beginning to see the potential for breakthrough in healthcare through glycomics, which studies carbohydrates, proteins and their interactions. In fact, these carbohydrates are moving beyond their regular roles as sugar storage bins. Carbohydrate-binding proteins are becoming extremely useful in curing various illnesses.

"The rapid evolution of glycomics as a natural extension of proteomics provides a better understanding of glycoproteins, glycosylation process, and its role in the protein function," explains Frost & Sullivan Industry Analyst Giridhar Rao. "This in turn facilitates the development of novel biodrugs."


The rapid progress of glycomics in the biopharmaceutical industry is evident from the existence of approximately half a dozen drugs, in which manipulation of carbohydrates and proteins provides advanced drug properties. For example, Epogen – a glycotherapeutic drug – contains two additional carbohydrate groups that can extend circulatory half-life and magnify efficiencies.

Active research on glycosyltransferases to understand the role of carbohydrate interactions in a cancerous cell is also likely to provide further opportunities for application of glycomics. One such prospect lies in the development of protein serum-based cancer diagnostics.

In fact, glycoprotein therapeutics is the fastest growing segment in the biopharmaceuticals industry with an annual growth rate of 24 percent, which is expected to accelerate further. However, maintaining adequate manufacturing capacity is a critical challenge.

"With around 100 protein-based drugs that are in late-stages of human clinical trials, few are likely to hit the market in the coming years," says Rao. "Hence, raising the demand for production capacity at least by four times more than the existing capacity. This may be essential to maintain the demand-supply equilibrium."

This creates an urgent need for alternate manufacturing media such as transgenic plants and animals, besides the mammalian and microbial and fungal cell culture systems.

Fungal cell lines provide considerable time and cost benefits over mammalian cell lines. For instance, the latter proves to be a lengthy process and may alter the properties of the final therapeutic glycoprotein.

Conversely, fungal cell lines such as engineered yeast expression systems for production of humanly glycosylated protein provide for faster fermentation and a higher product yield.

Industrial bioprocessing also holds immense potential for biotechnology. The development of a sophisticated microbioreactor for bacterial cell culture could speed up the bioprocessing mechanism.

A 5- to 50-microliter microbioreactor provides significant advantages over traditional chemical processes, such as lower temperature, pressure, and almost neutral pH requirements. Also, mass production with lesser power consumption is viable since the raw materials are renewable living cells.

Nano-biotechnology proves to be another potential growth area, where the endless possibilities of ’doing big with small’ exist. This has sparked an explosion of research and has influenced the commercialization of many nano drug delivery technologies.

For instance, the uniquely small-sized carbon buckyballs and nanotubes are proving to be successful nano-carriers that are small enough to navigate within the body. Thereby, they could serve as effective carriers of active ingredients for cancer treatment. However, dealing with the toxicity of trace nanoparticles that could be left behind in the body, is a major concern.

Another promising technique is nano-sized dendrimers that escape the blood stream through vascular pores, and selectively target and treat tumor cells. Dendrimer-based drugs coupled with additional agents provide high-end tumor images and hence could revolutionize cancer treatment.

Julia Paulson | EurekAlert!
Further information:
http://www.frost.com
http://www.technicalinsights.frost.com

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>