Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural enemies help scientists untangle tropical forest food webs

18.03.2004


British ecologists have gathered compelling new experimental evidence on how tropical rain forest food webs are constructed, findings that may have important implications for their environmental management.



The research reported in Nature today (18 March) demonstrates how species that never meet may nevertheless influence each other’s ecology through shared parasites, and confirms the action of an important ecological theory in the highly biodiverse rain forest environment.

Ecologists have long believed that species which have nothing in common but a ’natural enemy’ - something that eats or parasitises both of them - may interact indirectly. The patterns that result parallel those caused by traditional competition for food, hence the name given to the effect: ’apparent competition’.


To test the theory scientists conducted a painstaking field experiment in Belize, Central America, measuring the effects of removing a beetle and a fly on other species with which they share natural enemies.

The beetle and fly belong to a very diverse group of insects whose larvae, named leaf miners, feed inside the leaves of plants. To take away just these particular insect leaf miners, researchers removed all traces of the plant that sustains only them.

A year after their removal, researchers surveyed the health of the insect species that shared natural enemies with the beetle and fly and found significantly lower parasitism and significantly higher abundance.

"This is basic ecological research intended chiefly to increase our understanding of these insect communities, but it also speaks to a number of biodiversity and management issues," said Professor Charles Godfray from the Natural Environment Research Council (NERC) Centre for Population Biology at Imperial, and author of the research.

If the results are typical of herbivore communities, say the authors, the development of this theory, and its associated experimental tests, will be essential to understand the diversity and structure of insect communities, especially in the species-rich tropics.

"It suggests that removal or addition of species, for example through selective logging or the release of a biological control agent, may have knock-on effects mediated by the network of natural enemies," said Professor Godfray.

The authors of the research from the NERC Centre for Population Biology at Imperial College London and the University of Oxford carried out the large-scale field experiment at the Natural History Museum’s Las Cuevas Research Station in Belize, Central America.

Their experiment wasn’t simple or easy: while scientists have carried out tests of apparent competition along coastal shorelines and in laboratory systems, manipulative experiments on insect communities in an environment as complex as a tropical forest are difficult and challenging and have rarely been attempted. Parasitism and predation can be especially intense, and levels of insect biodiversity are exceptionally high.

Previous work at the site by the same group led by one of the authors, Dr Owen Lewis, revealed the complexity of the food web they were studying: 93 species of leaf miner were attacked by 84 species of parasitoid wasp. Of the plants that were host to leaf miners, most were attacked by a single species but the researchers found that the vine plant Lepidaploa tortuosa was home to two leaf miners - a fly and a beetle (Latin names Pentispa fairmairei and Calycomyza sp. 8 respectively).

To test the apparent competition theory the researchers removed all of the L.tortuosa in their experimental fieldwork plots, alongside a 6-km stretch of track, in December 2001. In control plots the same biomass of plant material was removed from randomly chosen plant species that were not attacked by leaf miners.

Ten to 12 months, or five to six leaf miner generations, later, the scientists returned to measure the difference the clearance had made on the amount of parasitism and abundance of insects in the leaf miner food web.

Dr Becky Morris, a postdoctoral research associate at the NERC Centre for Population Biology and first author on the paper, masterminded the experimental work in Belize, organising and carrying out the host plant clearance.

The research was supported by the Natural Environment Research Council.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk
http://www.cpb.bio.imperial.ac.uk

More articles from Life Sciences:

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A materials scientist’s dream come true

21.08.2018 | Materials Sciences

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>