Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Describe Cell Activity Leading to Disruption of Neuron Migration

22.01.2004


An interaction between two brain proteins that leads to abnormal brain development has been identified by researchers at the University of California, San Diego (UCSD) School of Medicine in a study published in the January 22, 2004 issue of the journal Neuron.



The studies in mice, conducted in the lab of Joseph G. Gleeson, M.D., UCSD assistant professor of neurosciences, combines work in both humans and mice to identify a protein kinase called Cdk5 as the “off” switch for a crucial neuronal migration protein called doublecortin. When Cdk5 adds a phosphate molecule to doublecortin, the doublecortin is inactivated and neuronal migration is arrested.

In the normal brain, neurons are born deep within fluid filled cavities of the brain during the third and fourth month of gestation. Then, they must migrate hundreds of cell-body distances to reach their proper position within the six-layered cortex. When this migration is defective and neurons are stopped short of their destination, there is an absence of the normal grooves and ridges that characterize the brain in higher mammals.


A severe brain disorder in newborns, called lissencephaly, or “smooth brain,” is a result of abnormal neuronal migration where only four, instead of six layers of cortex are formed. Those children who survive the mutation suffer from profound mental retardation, epilepsy and cerebral palsy. Gleeson and colleagues previously showed that mutations in the doublecortin gene account for approximately 20 percent of the cases of lissencephaly in humans.

The study concluded that Cdk5 phosphorylation and inactivation of doublecortin takes place normally in the developing brain, but that it is balanced by reactivation of doublecortin by an as-yet-unidentified “on” switch. It appears that the regulation of this phosphorylation is critical for migration, and that both inactivation and reactivation are required for the normal functioning of the protein. Gleeson’s laboratory is currently searching for the signals that serve as the “on” switch to reactivate doublecortin.

“Neuron migration is poorly understood by scientists,” he noted. “With the discovery of Cdk5 as a factor that regulates doublecortin, we are learning more about this vital developmental process. Eventually, discoveries such as this will contribute to therapies to prevent abnormal brain development.”

In back-to-back published articles in 1998, Gleeson and a team led by Christopher A. Walsh at Harvard*, and a group of French scientists co-discovered doublecortin as one of the genes that causes lissencephaly when it is mutated. Further studies in 1999 by Gleeson and colleagues determined that doublecortin directly binds to microtubules, part of the cellular cytoskeleton that acts like a railroad track for the contents of neurons that move in the brain. However, researchers still didn’t know how doublecortin worked or what regulated its function.

In the current study, the Gleeson team used sophisticated molecular technology to determine that Cdk5 interacts with doublecortin to add a phosphate molecule to a precise site on the protein. Next, the team inactivated Cdk5 in one group of neurons, thus preventing its phosphorylation of doublecortin. When these neurons, or neurons containing mutant doublecortin, were pitted in a race with normal neurons, they stopped short of their goal, indicating that this regulation by Cdk5 was critical for the function of doublecortin on the cells’ ability to move.

In the January 22 issue of Neuron is commentary about the Gleeson discovery by Joseph Lo Turco, Ph.D., University of Connecticut, who notes that doublecortin may “sit at the center of a general cellular program of morphological change engaged as neurons migrate through developing neocortex.”

Additional authors of the UCSD paper included first author Teruyuki Tanaka, M.D., UCSD Department of Neurosciences; Finley F. Serneo, M.D., UCSD Department of Neurosciences; Huang-Chun Tseng, Ph.D., and Li-Huei Tsai, Ph.D., Department of Pathology, Harvard Medical School and the Howard Hughes Medical Institute; and Ashok B. Kulkarni, Ph.D., Functional Genomics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health.

The study was funded by the Epilepsy Foundation of America; the Searle, Merck and Klingenstein Foundations; and the National Institute of Neurological Diseases and Stroke.

##

*Gleeson et al, Cell, 92(1): 63-72 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9489700&dopt=Abstract

News Media Contact:
Sue Pondrom
619-543-6163

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2004/01_21_Gleeson.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9489700&dopt=Abstract

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>