Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Technique Provides Clues into Cell Growth: Findings May Help Scientists Understand Tumor Spread

22.01.2004


Researchers at Washington University School of Medicine in St. Louis have developed a new probe that allows them to watch protein activity in living cells. In their initial study, which focused on a protein tentatively linked to the spread of cancerous cells, the team both proved their new technique works and revealed surprising new details about the protein’s activity.



The protein in this study, neuronal Wiskott–Aldrich syndrome protein (N-WASP), is naturally found in every cell in the body and is known to be involved in a wide range of cellular processes. One of its key functions is believed to be guiding cellular growth and movement within the body, including when tumor cells metastasize, or spread, from one organ to another.

“To our knowledge this is the first probe of its kind that allows us to actually see in a living system where, when and how proteins are activated,” says first author Michael E. Ward, a graduate student in anatomy and neurobiology. “This is significant progress in moving from examining the biochemistry of ground up cells to being able to study it in an intact cell.”


The study was led by Yi Rao, Ph.D., associate professor of anatomy and neurobiology. It appears online in the early edition of the Proceedings of the National Academy of Sciences and will be featured on the cover of the Jan. 27 print edition of the journal.
To design this new probe, the team took advantage of the fact that N-WASP folds in half when it is inactivated. They latched two fluorescent proteins onto the opposing ends of N-WASP — one yellow and one cyan (greenish-blue).

When stimulated by a particular wavelength of light, fluorescent proteins normally release energy in the form of light. In the case of yellow and cyan proteins, the light emitted appears either yellow or cyan. Under certain circumstances, light energy from the cyan protein can be transferred to the yellow protein since cyan is a higher energy light than yellow and energy naturally jumps from high- to low-energy states. The team hypothesized that, as N-WASP becomes activated and folds, the two ends would be brought closer together, resulting in an increase in the brightness of the yellow protein and a decrease in the brightness of the cyan protein. This phenomenon is called fluorescence resonance energy transfer.

While this phenomenon has been used previously to examine the activity of proteins other than N-WASP, this is the first study in which the natural folding and unfolding of a single protein was observed. All former efforts relied on artificially tethering two separate proteins together, which can produce deceptive results.

As they had hoped, the ratio of cyan to yellow light did accurately reflect N-WASP activity. Normally, N-WASP, so named because it belongs to a family of proteins implicated in the rare genetic disorder Wiskott-Aldrich syndrome, is only marginally activated by one of two proteins, PIP2 and CDC42. However, it becomes highly activated when simultaneously stimulated by the two proteins. In accordance with this synergistic effect, activation with only one of these proteins resulted in only a modest decrease in cyan light and increase in yellow light, while simultaneous activation with both resulted in a much more dramatic effect.

“It was exciting to discover that we could not only visualize N-WASP activation but also could visualize the specific integration of PIP2 and CDC42 stimulation,” Ward says. “This supports the idea that our probe is sensitive to normal cellular signaling processes.”

Using their new technique, the team recorded preliminary observations of N-WASP activation throughout living cells placed in a petri dish.

Traditionally, N-WASP was thought to be significantly active in filopodia, thin filaments that protrude from cells to help navigate through the body. As expected, N-WASP activity was high in these compartments.

However, several of the team’s other observations surprised them.

First, N-WASP and its stimulator proteins CDC42 and PIP2 all were active in “ruffles,” animated ridges on the cell membrane that also help cells move forward. According to Ward, research on N-WASP has never highlighted its potential role in ruffling.

Second, some of the highest levels of N-WASP activity were in the nucleus, despite the general assumption that the protein’s main functions are in cell movement, which occurs in the periphery of the cell.

“Because we were able to visualize where N-WASP is activated, we were able to show it’s activated in certain unexpected cellular compartments,” Ward says. “Now that we’ve demonstrated this technique is effective, we hope to further examine this protein’s activity and also to see whether similar probes can help us visualize other folding proteins.”


Ward ME, Wu JY, Rao Y. Visualization of spatially and temporally regulated N-WASP activity during cytoskeletal reorganization in living cells. Proceedings of the National Academy of Sciences, Jan. 27, 2004.

Funding from the National Institutes of Health, the Society for Progressive Supranuclear Palsy, the National Brain Tumor Foundation, the Muscular Dystrophy Association and the Leukemia Society of America supported this research.

Gila Z. Reckess | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/2DA888C74CBB9BF686256E22006553A9?OpenDocument

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>