Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that regulate hearing link humans and fruit flies in new way

10.10.2003


Fly genetics may increase understanding of human hearing disorders



Researchers at the University of Wisconsin Medical School have found genetic evidence linking humans and fruit flies in a new way: through their hearing. The link offers the future possibility that the insect’s auditory system may serve as a model for understanding human deafness and other hearing disorders.

The scientists found that a mutated fruit fly gene controlling hearing and the mutated human counterpart gene both produced similar consequences: hearing loss as well as limb deformities and genital abnormalities. The mutated human gene is responsible for a disorder called Townes-Brocks’ syndrome. The unexpected finding was published in the Proceedings of the National Academy of Sciences Online (Sept. 2, 2003).


"We were very surprised to learn about this specific genetic similarity," said Grace Boekhoff-Falk, PhD, associate professor of anatomy, who led the study. "Developmental biologists have known that there are remarkable parallels between fruit fly and human genetics, but the parallels have been restricted to tissues and organs that existed before the evolutionary divergence of vertebrates and invertebrates, which occurred more than 600 million years ago."

Sensing mechanisms that helped ancient organisms function were thought to exist before that divergence, Boekhoff-Falk explained, but not the ability to hear. Until now, the conventional wisdom has been that hearing evolved separately in vertebrates and invertebrates. "Our data supports the novel idea that hearing already existed 600 million years ago," she said.

The fruit fly (Drosophila melanogaster) has been the object of scientific study for a century, providing fundamental information on the way genes are transmitted and the effects of genetic mutations. In the past 15 years or so, it has become clear that many genes occurring in humans are also found in fruit flies.

Some six years ago scientists were excited to find that the same gene regulates eye development in flies and humans. One promising outcome has been that researchers at UW Medical School are using the genetics of fruit fly optics to learn more about retinal degeneration and other vision disorders in humans.

"We’re hoping that our work can turn out to be equally useful for hearing researchers," said Boekhoff-Falk, adding that fly genetics also now serve as a model for Parkinson’s disease.

In the near term, scientists could use flies to identify additional genes critical to human hearing, she predicted, possibly leading to tests to screen newborns for hearing disorders. "In the longer term, it may be possible to use the knowledge to develop interventions to correct hearing disorders in children as well as hearing degeneration in adults," she said.

The current study was an outgrowth of Boekhoff-Falk’s earlier research on the fruit fly antenna, an appendage that serves as both ear and nose. Her group identified the gene (called spalt) that regulates hearing function only, which occurs in a structure on the antenna called Johnson’s organ.

"Due to the great history of fly genetics, there was ample knowledge of mutations existing in this gene, so we collected many of them and looked at their effects on mated flies," she said.

The outcome of the standard genetic pairings was improper development followed by complete failure of the auditory organ. Collaborators at the University of Iowa confirmed that the flies could not hear. The researchers also found that, as with Townes-Brocks’ syndrome in humans, the mutated gene produced limb and genital defects in the flies.

The Boekhoff-Falk team is now working on several other genes it has identified that are important in building the fly auditory apparatus. Some of the genes are also required for formation of the human ear. In addition to studying the genes themselves, the scientists look for similarities in the way the genes are regulated, patterns that reveal additional linkages between flies and humans.

The Wisconsin studies are a big piece in a slowly materializing puzzle suggesting that the earliest ancestor of humans and fruit flies possessed some structure that was capable of hearing.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht In depression the brain region for stress control is larger
20.09.2018 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation
19.09.2018 | Science China Press

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>