Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Night owls have shorter clock gene

16.06.2003


Some people can burn the midnight oil, while others might prefer to tackle their challenges early in the morning. Although most people know instinctively if they are an ‘evening’ or ‘morning’ person, scientists have now discovered why we fall into a certain category.



Scientists at the University of Surrey, in co-operation with clinical colleagues at St Thomas’’s Hospital (London) and Hospital de Gelderse Vallei (Netherlands), have discovered a correlation between a difference in the length of a so-called clock gene and morning or evening preference. This study is the first reported correlation between individuals with an extreme evening preference and variability in a specific gene. The gene, Period 3 (Per3), forms part of the clock genes that create our internal body clock. Per3 has two variants, one shorter and one longer.

Dr Simon Archer, lead author of the paper said of the findings: “We discovered that the shorter variant of the gene is significantly more common in people with an extreme evening preference. This is even more so in patients suffering from delayed sleep phase syndrome, a sleep disorder where people fall asleep at very late times and have difficulty waking up in the morning.”


Professor Jo Arendt, senior member of the team, said “It is tempting to speculate that one day some people might choose their lifestyle according to their clock genes.”

Dr Malcolm von Schantz, senior author, concluded: “There are at least ten of these clock genes and there are differences between these genes. Whether you are a night owl or a morning person is determined by the sum of these differences.”

Liezel Tipper | alfa
Further information:
http://surrey.ac.uk

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>