Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big red jelly surprises scientists

06.05.2003


Big Red (Tiburonia granrojo) can reach up to a meter across. The jelly was "discovered" and named by researchers at the Monterey Bay Aquarium Research Institute (MBARI).
This photograph was taken during a remotely operated vehicle (ROV) dive on the Gumdrop Seamount under the direction of scientist Dave Clague.
Photo copyright © 2002 MBARI


In photographs, it looks like a big red spaceship cruising the ocean depths. But it’s actually a new species of jelly that was discovered and described by scientists at the Monterey Bay Aquarium Research Institute. MBARI scientists published their research on this unusual animal in a recent online version of the journal Marine Biology.

With a bell diameter of up to a meter wide, the new jelly, named Tiburonia granrojo or "big red," would seem tough to miss, except that it lives deep below the ocean’s surface, at depths of 650 to 1500 meters (2000 to 4800 feet). MBARI scientists observed the jelly using video cameras on deep-diving remotely operated vehicles (ROVs). In fact, the jelly is named after MBARI’s ROV Tiburon.

Although MBARI scientists saw this jelly during ROV dives as early as 1993, it was not recognized as a new species until several years later. George Matsumoto, MBARI biologist and lead author of the paper, was first called in to identify the jelly after it was seen during 1998 geology expedition.



"Diving almost every day, we tend to take for granted some of the unusual and even bizarre animals that we see in the deep ocean." Matsumoto explains. "This just shows that we need to keep our eyes open, because there’s still plenty to discover down there."

Matsumoto immediately guessed that he was looking at a new species, but that was just the first step in classifying and naming the creature. First Matsumoto conducted an extensive literature search to make sure that the animal had not already been described. Then he and fellow researcher Kevin Raskoff consulted MBARI’s video annotation database. This database allows MBARI researchers to search through 15 years of dive videos to find all dives during which a particular animal was seen. By reviewing all of the observations of "big red," they were able to learn about the jelly’s typical size and geographic range.

Although first observed in the Pacific Ocean off California, MBARI scientists have also seen T. granrojo in deep waters near the Hawaiian Islands and, most recently, in the Gulf of California. To further extend the jelly’s range, Matsumoto and Raskoff worked with scientists at the Japan Marine Science and Technology Center, who spotted the jelly in Japanese waters.

T. granrojo is not just a new species and genus. It is so different from other jellies that it had to be assigned to a new subfamily (Tiburoniinae). Its large size and deep red color are distinctive. But what really sets T. granrojo apart is that, unlike most jellies, it has no tentacles. Instead, it uses its four to seven fleshy arms to capture food. Researchers were particularly surprised to find that the number of arms varies from individual to individual, because this is generally a diagnostic feature for determining different jelly species.

In some ways, naming the jelly was the easy part, as Matsumoto observes: "There are still so many unanswered questions about this jelly. What does it eat? Who are its predators? How does it reproduce? We have an idea of where it lives and continue to document sightings, but we have much to learn about its role in the ecosystem."

Like many oceanographic findings, the discovery of "big red" was the result of perseverance, luck, careful use of technology, and cooperation between scientists of different disciplines. The fact that scientists could miss something so big and with such a wide range suggests that many more surprises await us in our exploration of the deep sea.


Research article
Matsumoto, G.I., K. Raskoff, and D. Lindsay (2003). Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.). Marine Biology, DOI: 10.1007/s00227-003-1047-2.

Debbie Meyer | MBARI
Further information:
http://www.mbari.org/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>