Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover gene that contributes to sense of balance

25.03.2003


Researchers have discovered a gene that appears to be critical for maintaining a healthy sense of balance in mice. The study, led by a team at Washington University School of Medicine in St. Louis, appears in the April 1 issue of the journal Human Molecular Genetics and online March 24.



"Loss of balance is a significant problem in the elderly because it can lead to dangerous falls and injuries," says one of the study’s principal investigators, David M. Ornitz, M.D., Ph.D., professor of molecular biology and pharmacology at the School of Medicine. "Loss of balance also is a problem for astronauts following exposure to zero gravity. Now that we’ve discovered this new gene, we can begin to understand the mechanisms that allow the body to sense gravity and maintain balance."

Balance is determined and regulated by the vestibular system, which is housed in the inner ear. To detect gravity, a cluster of particles called otoconia rests atop hair cells lining the inner ear. Like a water buoy guided by the movement of waves, otoconia are displaced as the body moves. As otoconia move, they shift the hair cells, which triggers the cells to send messages to the brain.


Studies suggest that otoconia are only produced during development, and that they progressively degrade throughout life. Scientists believe otoconia become eroded during normal aging, which can lead to balance disorders. But little is understood about how otoconia develop, and whether it may be possible to stimulate the production or regeneration of these particles.

Ornitz’s team genetically analyzed two strains of mice tilted (tlt) and mergulhador (mlh) known to have problems with balance. These mice walk with their heads tilted and have trouble orienting themselves in water but have no hearing problems. Moreover, they are missing their otoconia but have normal sensory hair cells. The team discovered that the two strains both have a mutation in the same previously unidentified gene, which the researchers named Otopetrin 1 or Otop1 ("oto" means "ear" and "petra" means "stone").

"It’s possible that this is one of the genes that shuts down after development," Ornitz says. "It also is possible that it is involved in a variety of vestibular disorders. If we can find a way to reactivate this gene, we may be able to help otoconia regenerate and thereby treat or prevent balance disorders."

The study’s other principal investigators are Isolde Thalmann, Ph.D., research professor of otolaryngology, and Ruediger Thalmann, M.D., professor emiriti of otolaryngology. Postdoctoral fellow Belen Hurle, Ph.D., was first author. The School of Medicine team worked in collaboration with researchers at the University of São Paulo, Brazil.


Hurle B, Ignatova E, Massironi SM, Mashimo T, Rios X, Thalmann I, Thalmann R, Ornitz DM. Non-syndromic vestibular disorder with otoconial agenesis in Tilted mice caused by mutations in otopetrin 1. Human Molecular Genetics, April 1, 2003.

Funding from the National Institutes of Health supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>